Unprecedented High Temperature CO2 Selectivity and Effective Chemical Fixation by a Copper-Based Undulated Metal-Organic Framework

被引:56
|
作者
Das, Prasenjit [1 ]
Mandal, Sanjay K. [1 ]
机构
[1] Indian Inst Sci Educ & Res Mohali, Dept Chem Sci, Mohali 140306, Punjab, India
关键词
undulated metal-organic framework; paddle-wheel structure; high temperature CO2 selectivity; CBMC simulation; CO2; conversion; bifunctional heterogeneous catalysis; LIGHT-HYDROCARBON SEPARATION; CARBON-CAPTURE; ADSORPTION PROPERTIES; HYDROGEN ADSORPTION; EFFICIENT; MOF; FUNCTIONALIZATION; CONVERSION; SURFACE; STORAGE;
D O I
10.1021/acsami.0c09024
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Post- and precombustion CO2 capture and separation are the vital challenges from industrial viewpoint, as the accessible technologies are not cost-effective and cumbersome. Thus, the development of functional metal-organic frameworks (MOFs) that are found to be promising materials for selective CO2 capture, separation, and conversion is gaining an importance in the scientific world. Based on the strategic design, a new functionalized triazine-based undulated paddle-wheel Cu-MOF (1), {[Cu(MTABA)(H2O)]center dot 4H(2)O center dot 2EtOH center dot DMF}(n) (where, H(2)MTABA = 4,4'-((6-methoxy- 1,3,5-triazine-2,4-diyl) bis (azanediyl))dibenzoic acid), has been synthesized under solvothermal conditions and fully characterized. MOF 1 contains a one-dimensional channel along the a-axis with pore walls decorated with open metal sites, and multifunctional groups (amine, triazine, and methoxy). Unlike other porous materials, activated 1 (1') possesses exceptional increment in CO2/N-2 and CO2/CH4 selectivity with increased temperature calculated by the ideal adsorbed solution theory. With an increase in temperature from 298 to 313 K, the selectivity of CO2 rises from 350.3 to 909.5 at zero coverage, which is unprecedented till date. Moreover, 1' behaves as a bifunctional heterogeneous catalyst through Lewis acid (open metal) and Bronsted acid sites to facilitate the chemical fixation of CO2 to cyclic carbonates under ambient conditions. The high selectivity for CO(2 )by 1' even at higher temperature was further corroborated with configurational bias Monte Carlo molecular simulation that ascertains the multiple CO2-philic sites and epoxide binding sites in 1' to further decipher the mechanistic pathway.
引用
收藏
页码:37137 / 37146
页数:10
相关论文
共 50 条
  • [1] Copper-Based Metal-Organic Framework for Selective CO2 Adsoprtion and Catalysis Fixation of CO2 into Cyclic Carbonates
    Nguyen, Phuong T. K.
    Tran, Y. B. N.
    CHEMISTRYSELECT, 2021, 6 (17): : 4067 - 4073
  • [2] A Copper-Based Metal-Organic Framework for C2H2/CO2 Separation
    Wang, Xiaodan
    Wang, Bin
    Zhang, Xin
    Xie, Yi
    Arman, Hadi
    Chen, Banglin
    INORGANIC CHEMISTRY, 2021, 60 (24) : 18816 - 18821
  • [3] Copper-based metal-organic frameworks for electrochemical reduction of CO2
    Kang, Xiaomin
    Fu, Guodong
    Fu, Xian-Zhu
    Luo, Jing-Li
    CHINESE CHEMICAL LETTERS, 2023, 34 (06)
  • [4] Copper-based metal-organic frameworks for electrochemical reduction of CO2
    Xiaomin Kang
    Guodong Fu
    Xian-Zhu Fu
    Jing-Li Luo
    Chinese Chemical Letters, 2023, 34 (06) : 141 - 150
  • [5] Copper-based metal-organic frameworks for CO2 reduction: selectivity trends, design paradigms, and perspectives
    Nwosu, Ugochukwu
    Siahrostami, Samira
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (13) : 3740 - 3761
  • [6] Heterometallic {ZnEu}-metal-organic framework for efficient chemical fixation of CO2
    Lv, Hongxiao
    Chen, Hongtai
    Fan, Liming
    Zhang, Xiutang
    DALTON TRANSACTIONS, 2020, 49 (41) : 14656 - 14664
  • [7] Nickel based metal-organic framework as catalyst for chemical fixation of CO2 in oxazolidinone synthesis
    Helal, Aasif
    Fettouhi, Mohammed
    Arafat, Md. Eyasin
    Khan, Mohd Yusuf
    Sanhoob, Mohammed Ahmed
    JOURNAL OF CO2 UTILIZATION, 2021, 50
  • [8] Highly Efficient Capture of Postcombustion Generated CO2 through a Copper-Based Metal-Organic Framework
    Wu, Houxiao
    Yuan, Yinuo
    Chen, Yongwei
    Lv, Daofei
    Tu, Shi
    Wu, Ying
    Li, Zhong
    Xia, Qibin
    ENERGY & FUELS, 2021, 35 (01) : 610 - 617
  • [9] A rod packing microporous metal-organic framework: unprecedented ukv topology, high sorption selectivity and affinity for CO2
    Hou, Lei
    Shi, Wen-Juan
    Wang, Yao-Yu
    Guo, Ying
    Jin, Chen
    Shi, Qi-Zhen
    CHEMICAL COMMUNICATIONS, 2011, 47 (19) : 5464 - 5466
  • [10] A Zn Metal-Organic Framework with High Stability and Sorption Selectivity for CO2
    Wang, Rongming
    Liu, Xiaobin
    Qi, Dongdong
    Xu, Yuwen
    Zhang, Liangliang
    Liu, Xiaoqing
    Jiang, Jianzhuang
    Dai, Fangna
    Xiao, Xin
    Sun, Daofeng
    INORGANIC CHEMISTRY, 2015, 54 (22) : 10587 - 10592