Nuclear quantum effects and enzyme dynamics in dihydrofolate reductase catalysis

被引:156
作者
Agarwal, PK [1 ]
Billeter, SR [1 ]
Hammes-Schiffer, S [1 ]
机构
[1] Penn State Univ, Dept Chem, Davey Lab 152, University Pk, PA 16802 USA
关键词
D O I
10.1021/jp020190v
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mixed quantum/classical molecular dynamics simulations of the hydride transfer reaction catalyzed by dihydrofolate reductase are presented. The nuclear quantum effects such as zero point energy and hydrogen tunneling, as well as the motion of the entire solvated enzyme, are included during the generation of the free energy profiles and the real-time dynamical trajectories. The calculated deuterium kinetic isotope effect agrees with the experimental value. The simulations elucidate the fundamental nature of the nuclear quantum effects and provide evidence of hydrogen tunneling in the direction alone, the donor-acceptor axis. The transmission coefficient was found to be 0.80 for hydrogen and 0.85 for deuterium, indicating the significance of dynamical barrier recrossings. Nonadiabatic transitions among the vibrational states were observed but did not strongly affect the transmission coefficient. A study of motions involving residues conserved over 36 diverse species from Escherichia coli to human implies that motions of residues both in the active site and distal to the active site impact the free energy of activation and the degree of barrier recrossing. This analysis resulted in the characterization of a network of coupled promoting motions that extends throughout the protein and involves motions spanning femtosecond to millisecond time scales. This type of network has broad implications for protein engineering and drug design.
引用
收藏
页码:3283 / 3293
页数:11
相关论文
共 54 条
[1]  
AGARWAL PK, IN PRESS P NAT ACAD
[2]   Quantum dynamics of hydride transfer in enzyme catalysis [J].
Alhambra, C ;
Corchado, JC ;
Sánchez, ML ;
Gao, JL ;
Truhlar, DG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (34) :8197-8203
[4]   STATISTICAL-THEORIES OF CHEMICAL REACTIONS - DISTRIBUTIONS IN TRANSITION REGION [J].
ANDERSON, JB .
JOURNAL OF CHEMICAL PHYSICS, 1973, 58 (10) :4684-4692
[5]   Internal enzyme motions as a source of catalytic activity: Rate-promoting vibrations and hydrogen tunneling [J].
Antoniou, D ;
Schwartz, SD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (23) :5553-5558
[6]  
Bala P, 2000, BIOPHYS J, V79, P1253
[7]  
BENNETT CH, 1997, ALGORITHMS CHEM COMP
[8]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[9]   Hydride transfer in liver alcohol dehydrogenase: Quantum dynamics, kinetic isotope effects, and role of enzyme motion [J].
Billeter, SR ;
Webb, SP ;
Agarwal, PK ;
Iordanov, T ;
Hammes-Schiffer, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (45) :11262-11272
[10]   Hybrid approach for including electronic and nuclear quantum effects in molecular dynamics simulations of hydrogen transfer reactions in enzymes [J].
Billeter, SR ;
Webb, SP ;
Iordanov, T ;
Agarwal, PK ;
Hammes-Schiffer, S .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (15) :6925-6936