Integer-valued Levy processes and low latency financial econometrics

被引:39
|
作者
Barndorff-Nielsen, Ole E. [2 ,3 ]
Pollard, David G. [4 ]
Shephard, Neil [1 ,5 ,6 ]
机构
[1] Univ Oxford Nuffield Coll, Oxford OX1 1NF, England
[2] Univ Aarhus, Dept Math Sci, TN Thiele Ctr Math Nat Sci, DK-8000 Aarhus C, Denmark
[3] Univ Aarhus, CREATES, DK-8000 Aarhus C, Denmark
[4] Pollards Et Filles Ltd, Reading RG4 8UE, Berks, England
[5] Univ Oxford, Dept Econ, Oxford, England
[6] Univ Oxford, Oxford Man Inst, Oxford, England
关键词
Futures markets; High frequency econometrics; Low latency data; Negative binomial; Skellam; Tempered stable; ASSET PRICES; MODEL; VOLATILITY; RETURNS;
D O I
10.1080/14697688.2012.664935
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Motivated by features of low latency data in financial econometrics we study in detail integer-valued Levy processes as the basis of price processes for high-frequency econometrics. We propose using models built out of the difference of two subordinators. We apply these models in practice to low latency data for a variety of different types of futures contracts.
引用
收藏
页码:587 / 605
页数:19
相关论文
共 50 条
  • [1] MCMC for integer-valued ARMA processes
    Neal, Peter
    Rao, T. Subba
    JOURNAL OF TIME SERIES ANALYSIS, 2007, 28 (01) : 92 - 110
  • [2] INTEGER-VALUED SELF-SIMILAR PROCESSES
    STEUTEL, FW
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1984, 17 (01) : 27 - 28
  • [3] INTEGER-VALUED BRANCHING-PROCESSES WITH IMMIGRATION
    STEUTEL, FW
    VERVAAT, W
    WOLFE, SJ
    ADVANCES IN APPLIED PROBABILITY, 1983, 15 (04) : 713 - 725
  • [4] Mixing properties of integer-valued GARCH processes
    Doukhan, Paul
    Khan, Naushad Mamode
    Neumann, Michael H.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (01): : 401 - 420
  • [5] Contributions to the theory of integer-valued Markoff processes
    Elfving, G.
    SKANDINAVISK AKTUARIETIDSKRIFT, 1946, 29 (3-4): : 175 - 205
  • [6] ADMISSIBLE AND MINIMAX INTEGER-VALUED ESTIMATORS OF AN INTEGER-VALUED PARAMETER
    ROBSON, DS
    ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (03): : 801 - 812
  • [7] Integer-valued autoregressive processes with periodic structure
    Monteiro, Magda
    Scotto, Manuel G.
    Pereira, Isabel
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (06) : 1529 - 1541
  • [8] Limit theorems for bifurcating integer-valued autoregressive processes
    Bercu B.
    Blandin V.
    Statistical Inference for Stochastic Processes, 2015, 18 (1) : 33 - 67
  • [9] On bivariate threshold Poisson integer-valued autoregressive processes
    Yang, Kai
    Zhao, Yiwei
    Li, Han
    Wang, Dehui
    METRIKA, 2023, 86 (08) : 931 - 963
  • [10] On bivariate threshold Poisson integer-valued autoregressive processes
    Kai Yang
    Yiwei Zhao
    Han Li
    Dehui Wang
    Metrika, 2023, 86 : 931 - 963