Electrochemical reduction of nalidixic acid at glassy carbon electrode modified with multi-walled carbon nanotubes

被引:9
|
作者
Patino, Yolanda [1 ]
Pilehvar, Sanaz [2 ]
Diaz, Eva [1 ]
Ordonez, Salvador [1 ]
De Wael, Karolien [2 ]
机构
[1] Univ Oviedo, Dept Chem & Environm Engn, Fac Chem, Julian Claveria S-N, E-33006 Oviedo, Spain
[2] Univ Antwerp, Dept Chem, AXES Res Grp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
关键词
Quinolones; Degradation; Cyclic voltammetry; Differential pulse voltammetry; Micropollutants; STRIPPING VOLTAMMETRIC DETERMINATION; ASCORBIC-ACID; ANTIHISTAMINE DRUG; URIC-ACID; ADSORPTION; PHARMACEUTICALS; SENSOR; ELECTROOXIDATION; DEGRADATION; OXIDATION;
D O I
10.1016/j.jhazmat.2016.10.023
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The aqueous phase electrochemical degradation of nalidixic acid (NAL) is studied in this work, using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) as instrumental techniques. The promotional effect of multi-walled carbon nanotubes (MWCNT) on the performance of glassy carbon electrodes is demonstrated, being observed that these materials catalyze the NAL reduction. The effect of surface functional groups on MWCNT-MWCNT-COOH and MWCNT-NH2-was also studied. The modification of glassy carbon electrode (GCE) with MWCNT leads to an improved performance for NAL reduction following the order of MWCNT>MWCNT-NH2>MWCNT-COOH. The best behavior at MWCNT-GCE is mainly due to both the increased electrode active area and the enhanced MWCNT adsorption properties. The NAL degradation was carried out under optimal conditions (pH =5.0, deposition time =20 s and volume of MWCNT= 10 mu L) using MWCNT-GCE obtaining an irreversible reduction of NAL to less toxic products. Paramaters as the number of DPV cycles and the volume/area (V/A) ratio were optimized for maximize pollutant degradation. It was observed that after 15 DPV scans and V/A= 8, a complete reduction was obtained, obtaining two sub-products identified by liquid chromatography-mass spectrometry (LC-MS). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:621 / 631
页数:11
相关论文
共 50 条
  • [1] Electrochemical determination of berberine at a multi-walled carbon nanotubes-modified glassy carbon electrode
    Geto, Alemnew
    Pita, Marcos
    De Lacey, Antonio L.
    Tessema, Merid
    Admassie, Shimelis
    SENSORS AND ACTUATORS B-CHEMICAL, 2013, 183 : 96 - 101
  • [2] Electrochemical properties and the determination of nicotine at a multi-walled carbon nanotubes modified glassy carbon electrode
    Huayu Xiong
    Yunfei Zhao
    Peng Liu
    Xiuhua Zhang
    Shengfu Wang
    Microchimica Acta, 2010, 168 : 31 - 36
  • [3] Electrochemical properties and the determination of nicotine at a multi-walled carbon nanotubes modified glassy carbon electrode
    Xiong, Huayu
    Zhao, Yunfei
    Liu, Peng
    Zhang, Xiuhua
    Wang, Shengfu
    MICROCHIMICA ACTA, 2010, 168 (1-2) : 31 - 36
  • [4] Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode
    Wei, Chan
    Huang, Qitong
    Hu, Shirong
    Zhang, Hanqiang
    Zhang, Wuxiang
    Wang, Zhaoming
    Zhu, Menglin
    Dai, Pingwang
    Huang, Lizhang
    ELECTROCHIMICA ACTA, 2014, 149 : 237 - 244
  • [5] Direct Electrochemical Reaction of Phytohemagglutinin Adsorbed at the Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode
    Madrakian, Tayyebeh
    Bagheri, Habibollah
    Afkhami, Abbas
    Rad, Abdolkarim Chehregani
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) : G37 - G42
  • [6] Electrochemical Determination of Vitamin C on Glassy Carbon Electrode Modified by Carboxyl Multi-walled Carbon Nanotubes
    He, Baoshan
    Zhang, Junxia
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (11): : 9621 - 9631
  • [7] Electrochemical Determination of Resveratrol Using Multi-Walled Carbon Nanotubes-Modified Glassy Carbon Electrode
    Huang, Wensheng
    Luo, Shijia
    Zhou, Dazhai
    Zhang, Shenghui
    Wu, Kangbing
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2013, 5 (03) : 367 - 371
  • [8] Electrochemical Oxidation and Determination of Methocarbamol at Multi-walled Carbon Nanotubes-Modified Glassy Carbon Electrode
    Lamani, Shekappa D.
    Teradale, Amit B.
    Unki, Shrishail N.
    Nandibewoor, Sharanappa T.
    ANALYTICAL & BIOANALYTICAL ELECTROCHEMISTRY, 2016, 8 (03): : 304 - 317
  • [9] Electrocatalytic reduction of oxygen at multi-walled carbon nanotubes and cobalt porphyrin modified glassy carbon electrode
    Qu, JY
    Yan, S
    Qu, XH
    Dong, SJ
    ELECTROANALYSIS, 2004, 16 (17) : 1444 - 1450
  • [10] An application of a glassy carbon electrode and a glassy carbon electrode modified with multi-walled carbon nanotubes in electroanalytical determination of oxycarboxin
    Leniart, Andrzej
    Brycht, Mariola
    Burnat, Barbara
    Skrzypek, Sawomira
    IONICS, 2018, 24 (07) : 2111 - 2121