Weighted Herz Spaces and Regularity Results

被引:1
|
作者
Guo, Yuxing [1 ]
Jiang, Yinsheng [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Xinjiang 830046, Urumqi, Peoples R China
关键词
BOUNDEDNESS; EQUATIONS; OPERATORS;
D O I
10.1155/2012/283730
中图分类号
学科分类号
摘要
It is proved that, for the nondivergence form elliptic equations Sigma(n)(i,j-1) a(ij)u(xixj) = f, if f belongs to the weighted Herz spaces K-q(p)(phi, w), then u(xixj) is an element of K-q(p)(phi, w), where u is the W-2,W-p-solution of the equations. In order to obtain this, the authors first establish the weighted boundedness for the commutators of some singular integral operators on K-p(q)(phi, w).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Homogeneous Herz spaces and regularity results
    Ragusa, Maria Alessandra
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1909 - E1914
  • [3] Localized operators on weighted Herz spaces
    Ho, Kwok-Pun
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (11) : 4067 - 4080
  • [4] Two Weighted Herz Spaces with Variable Exponents
    Izuki, Mitsuo
    Noi, Takahiro
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 169 - 200
  • [5] GENERALIZED HAUSDORFF OPERATORS ON WEIGHTED HERZ SPACES
    Kuang Jichang
    MATEMATICKI VESNIK, 2014, 66 (01): : 19 - 32
  • [6] Weighted Morrey-Herz Spaces And Applications
    Kuang, Jichang
    APPLIED MATHEMATICS E-NOTES, 2010, 10 : 159 - 166
  • [7] Boundedness of several operators on weighted Herz spaces
    Komori, Yasuo
    Matsuoka, Katsuo
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2009, 7 (01): : 1 - 12
  • [8] Hardy Operators and Commutators on Weighted Herz Spaces
    Hu, Jingling
    Peng, Yangke
    Li, Wenming
    ANALYSIS IN THEORY AND APPLICATIONS, 2023, 39 (02): : 178 - 190
  • [9] Two Weighted Herz Spaces with Variable Exponents
    Mitsuo Izuki
    Takahiro Noi
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 169 - 200
  • [10] PARAMETRIC MARCINKIEWICZ INTEGRALS ON WEIGHTED HERZ SPACES
    Hu, Yue
    Wang, Yueshan
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (02) : 869 - 885