Bond energy decomposition analysis for subsystem density functional theory

被引:15
|
作者
Beyhan, S. Maya [1 ]
Gotz, Andreas W. [1 ,2 ]
Visscher, Lucas [1 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam Ctr Multiscale Modeling, NL-1081 HV Amsterdam, Netherlands
[2] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 138卷 / 09期
关键词
CONSTRAINED ELECTRON-DENSITY; DER-WAALS INTERACTIONS; KOHN-SHAM EQUATIONS; MOLECULAR-ORBITAL METHOD; KINETIC-ENERGY; DISPERSION CORRECTIONS; INTERMOLECULAR INTERACTIONS; STACKING INTERACTIONS; HYDROPHOBIC CORE; BENZENE DIMER;
D O I
10.1063/1.4793629
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We employed an explicit expression for the dispersion (D) energy in conjunction with Kohn-Sham (KS) density functional theory and frozen-density embedding (FDE) to calculate interaction energies between DNA base pairs and a selected set of amino acid pairs in the hydrophobic core of a small protein Rubredoxin. We use this data to assess the accuracy of an FDE-D approach for the calculation of intermolecular interactions. To better analyze the calculated interaction energies we furthermore propose a new energy decomposition scheme that is similar to the well-known KS bond formation analysis [F. M. Bickelhaupt and E. J. Baerends, Rev. Comput. Chem. 15, 1 (2000)], but differs in the electron densities used to define the bond energy. The individual subsystem electron densities of the FDE approach sum to the total electron density which makes it possible to define bond energies in terms of promotion energies and an explicit interaction energy. We show that for the systems considered only a few freeze-and-thaw cycles suffice to reach convergence in these individual bond energy components, illustrating the potential of FDE-D as an efficient method to calculate intermolecular interactions. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793629]
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Adaptive Subsystem Density Functional Theory
    Shao, Xuecheng
    Lopez, Andres Cifuentes
    Musa, Md Rajib Khan
    Nouri, Mohammad Reza
    Pavanello, Michele
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (11) : 6646 - 6655
  • [2] Subsystem functionals in density functional theory
    Mattsson, AE
    Armiento, R
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U780 - U780
  • [3] Nonlocal Subsystem Density Functional Theory
    Mi, Wenhui
    Pavanello, Michele
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (01): : 272 - 279
  • [4] Subsystem density-functional theory
    Jacob, Christoph R.
    Neugebauer, Johannes
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2014, 4 (04) : 325 - 362
  • [5] Constrained subsystem density functional theory
    Ramos, Pablo
    Pavanello, Michele
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (31) : 21172 - 21178
  • [6] Alternative definitions of the frozen energy in energy decomposition analysis of density functional theory calculations
    Horn, Paul R.
    Head-Gordon, Martin
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (08):
  • [7] Energy decomposition analysis based on broken symmetry unrestricted density functional theory
    Tang, Zhen
    Jiang, Zhen
    Chen, Hongjiang
    Su, Peifeng
    Wu, Wei
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (24):
  • [8] Periodic subsystem density-functional theory
    Genova, Alessandro
    Ceresoli, Davide
    Pavanello, Michele
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (17):
  • [9] Subsystem density-functional theory (update)
    Jacob, Christoph R.
    Neugebauer, Johannes
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2024, 14 (01)
  • [10] Performance of Kinetic Energy Functionals for Interaction Energies in a Subsystem Formulation of Density Functional Theory
    Gotz, Andreas W.
    Beyhan, S. Maya
    Visscher, Lucas
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (12) : 3161 - 3174