Improved Swap Heuristic for the Multiple Knapsack Problem

被引:0
|
作者
Laalaoui, Yacine [1 ]
机构
[1] Taif Univ, IT Dept, At Taif, Saudi Arabia
关键词
Multiple Knapsack Problem; Heuristics; Swap; GENETIC ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we describe two new improvements of the well known Martell and Toth Heuristic Method (MTHM). Our new improvements are very simple and at the same time they are very efficient since they yield to more than 15% over MTHM with an excellent execution time performance in relatively large problem instances. Further, the new improvements give a very close results to sophisticated meta-heuristics namely Genetic Algorithms with a gap less than 1% within a time slot less than a second.
引用
收藏
页码:547 / 555
页数:9
相关论文
共 50 条
  • [1] HEURISTIC ALGORITHMS FOR THE MULTIPLE KNAPSACK-PROBLEM
    MARTELLO, S
    TOTH, P
    COMPUTING, 1981, 27 (02) : 93 - 112
  • [2] A hybrid heuristic for the multiple choice multidimensional knapsack problem
    Mansi, Raid
    Alves, Claudio
    Valerio de Carvalho, J. M.
    Hanafi, Said
    ENGINEERING OPTIMIZATION, 2013, 45 (08) : 983 - 1004
  • [3] The quadratic multiple knapsack problem and three heuristic approaches to it
    Hiley, Amanda
    Julstrom, Bryant A.
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 547 - +
  • [4] Heuristic Algorithms for the Fixed-Charge Multiple Knapsack Problem
    You, Byungjun
    Yamada, Takeo
    OPERATIONS RESEARCH AND ITS APPLICATIONS, PROCEEDINGS, 2008, 8 : 207 - 218
  • [5] Heuristic algorithms for the multiple-choice multidimensional knapsack problem
    Hifi, M
    Michrafy, M
    Sbihi, A
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2004, 55 (12) : 1323 - 1332
  • [6] A Heuristic for the multi-knapsack problem
    Grandón, Jose
    Derpich, Ivan
    WSEAS Transactions on Mathematics, 2011, 10 (03) : 95 - 104
  • [7] A Stochastic Local Search Heuristic for the Multidimensional Multiple-choice Knapsack Problem
    Xia, Youxin
    Gao, Chao
    Li, JinLong
    BIO-INSPIRED COMPUTING - THEORIES AND APPLICATIONS, BIC-TA 2015, 2015, 562 : 513 - 522
  • [8] Heuristic solutions for the multiple-choice multi-dimension knapsack problem
    Akbar, MM
    Manning, EG
    Shoja, GC
    Khan, S
    COMPUTATIONAL SCIENCE -- ICCS 2001, PROCEEDINGS PT 2, 2001, 2074 : 659 - 668
  • [9] Heuristic algorithms for the cardinality constrained knapsack problem
    Pienkosz, Krzysztof
    PRZEGLAD ELEKTROTECHNICZNY, 2008, 84 (09): : 89 - 92
  • [10] A randomized heuristic repair for the multidimensional knapsack problem
    Martins, Jean P.
    Ribas, Bruno C.
    OPTIMIZATION LETTERS, 2021, 15 (02) : 337 - 355