On the correlations of directions in the Euclidean plane

被引:15
|
作者
Boca, FP [1 ]
Zaharescu, A [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
directions in R-2; correlation measures;
D O I
10.1090/S0002-9947-05-03783-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R-(x,y),Q((v)) denote the repartition of the v-level correlation measure of the finite set of directions P-(x,P- y) P, where P-(x,P- y) is the fixed point (x, y) is an element of [0, 1](2) and P is an integer lattice point in the square [-Q, Q](2). We show that the average of the pair correlation repartition R-(x,y),Q((2)) over (x, y) in a fixed disc D-0 converges as Q -> infinity. More precisely we prove, for every lambda is an element of R+ and 0 < delta < 1/10, the estimate 1/Area(D-0) integral integral R-Do((x,y),Q)(2)(lambda)dxdy = 2 pi lambda/3 + O-D0,(lambda),delta(Q(-1/10+delta)) as Q -> infinity. We also prove that for each individual point (x,y) is an element of [0, 1](2), the 6-level correlation R-(x,y),Q((6))(lambda) diverges at any point lambda is an element of R-+(5) as Q -> infinity, and we give an explicit lower bound for the rate of divergence.
引用
收藏
页码:1797 / 1825
页数:29
相关论文
共 50 条
  • [1] Plane Euclidean reasoning
    Fearnley-Sander, D
    AUTOMATED DEDUCTION IN GEOMETRY, PROCEEDINGS, 1999, 1669 : 86 - 110
  • [2] EUCLIDEAN AND NON-EUCLIDEAN NORMS IN A PLANE
    SENECHALLE, DA
    ILLINOIS JOURNAL OF MATHEMATICS, 1971, 15 (02) : 281 - +
  • [3] Plane Euclidean Geometry
    Leversha, Gerry
    MATHEMATICAL GAZETTE, 2007, 91 (520): : 173 - 175
  • [4] A Euclidean Ramsey result in the plane
    Tsaturian, Sergei
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (04):
  • [5] THE UNIFORM SUBSETS OF THE EUCLIDEAN PLANE
    Beriashvili, Mariam
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2020, 174 (03) : 391 - 393
  • [6] EVOLUTES OF FRONTS IN THE EUCLIDEAN PLANE
    Fukunaga, T.
    Takahashi, M.
    JOURNAL OF SINGULARITIES, 2014, 10 : 92 - 107
  • [7] On Vertices of Frontals in the Euclidean Plane
    Nakatsuyama, Nozomi
    Takahashi, Masatomo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (03):
  • [8] REPRESENTATIONS OF THE EUCLIDEAN GROUP IN THE PLANE
    GRUBER, B
    HENNEBERGER, WC
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1983, 77 (02): : 203 - 233
  • [9] LATTICE MOTIONS OF THE EUCLIDEAN PLANE
    MAKSIMOV, VM
    MATHEMATICS OF THE USSR-SBORNIK, 1980, 37 (02): : 245 - 259
  • [10] Algebraic models of the Euclidean plane
    Blanc, Jeremy
    Dubouloz, Adrien
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2018, 2