Dynamic character of charge transport parameters in disordered organic semiconductor field-effect transistors

被引:44
|
作者
Chen, Y. [1 ]
Lee, B. [1 ]
Yi, H. T. [1 ]
Lee, S. S. [2 ]
Payne, M. M. [3 ]
Pola, S. [4 ]
Kuo, C. -H. [4 ]
Loo, Y. -L. [2 ]
Anthony, J. E. [3 ]
Tao, Y. T. [4 ]
Podzorov, V. [1 ,5 ]
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[2] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[3] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA
[4] Acad Sinica, Inst Chem, Taipei, Taiwan
[5] Rutgers State Univ, Inst Adv Mat & Devices Nanotechnol, Piscataway, NJ 08854 USA
关键词
THIN-FILM TRANSISTORS; ELECTRONIC-PROPERTIES; BIAS STRESS; CRYSTAL; PENTACENE; MOBILITY; HOLE; BAND; CRYSTALLIZATION; GAP;
D O I
10.1039/c2cp41823a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this perspective article, we discuss the dynamic instability of charge carrier transport in a range of popular organic semiconductors. We observe that in many cases field-effect mobility, an important parameter used to characterize the performance of organic field-effect transistors (OFETs), strongly depends on the rate of the gate voltage sweep during the measurement. Some molecular systems are so dynamic that their nominal mobility can vary by more than one order of magnitude, depending on how fast the measurements are performed, making an assignment of a single mobility value to devices meaningless. It appears that dispersive transport in OFETs based on disordered semiconductors, those with a high density of localized trap states distributed over a wide energy range, is responsible for the gate voltage sweep rate dependence of nominal mobility. We compare such rate dependence in different materials and across different device architectures, including pristine and trap-dominated single-crystal OFETs, as well as solution-processed polycrystalline thin-film OFETs. The paramount significance given to a single mobility value in the organic electronics community and the practical importance of OFETs for applications thus suggest that such an issue, previously either overlooked or ignored, is in fact a very important point to consider when engaging in fundamental studies of charge carrier mobility in organic semiconductors or designing applied circuits with organic semiconductors.
引用
收藏
页码:14142 / 14151
页数:10
相关论文
共 50 条
  • [1] Charge transport in disordered organic field-effect transistors
    Tanase, C
    Blom, PWM
    Meijer, EJ
    de Leeuw, DM
    ORGANIC AND POLYMERIC MATERIALS AND DEVICES-OPTICAL, ELECTRICAL AND OPTOELECTRONIC PROPERTIES, 2002, 725 : 125 - 129
  • [2] Charge transport in organic field-effect transistors
    Chen, Xu
    Guo, Jianhang
    Peng, Lichao
    Wang, Qijing
    Jiang, Sai
    Li, Yun
    MATERIALS TODAY ELECTRONICS, 2023, 6
  • [3] Charge transport in polycrystalline organic field-effect transistors
    Horowitz, G
    POLYCRYSTALLINE SEMICONDUCTORS IV MATERIALS, TECHNOLOGIES AND LARGE AREA ELECTRONICS, 2001, 80-81 : 3 - 13
  • [4] Ambipolar charge transport in organic field-effect transistors
    Smits, Edsger C. P.
    Anthopoulos, Thomas D.
    Setayesh, Sepas
    van Veenendaal, Erik
    Coehoorn, Reinder
    Blom, Paul W. M.
    de Boer, Bert
    de Leeuw, Dago M.
    PHYSICAL REVIEW B, 2006, 73 (20)
  • [5] Dimensionality of charge transport in organic field-effect transistors
    Sharma, A.
    van Oost, F. W. A.
    Kemerink, M.
    Bobbert, P. A.
    PHYSICAL REVIEW B, 2012, 85 (23):
  • [6] Local charge carrier mobility in disordered organic field-effect transistors
    Tanase, C
    Meijer, EJ
    Blom, PWM
    de Leeuw, DM
    ORGANIC ELECTRONICS, 2003, 4 (01) : 33 - 37
  • [7] Electric Field Confinement Effect on Charge Transport in Organic Field-Effect Transistors
    Li, Xiaoran
    Kadashchuk, Andrey
    Fishchuk, Ivan I.
    Smaal, Wiljan T. T.
    Gelinck, Gerwin
    Broer, Dirk J.
    Genoe, Jan
    Heremans, Paul
    Baessler, Heinz
    PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [8] Charge transport and light emission in bilayer organic field-effect transistors
    Li, Weicong
    Kwok, H. L.
    THIN SOLID FILMS, 2012, 520 (09) : 3600 - 3604
  • [9] Charge transport in dual-gate organic field-effect transistors
    Brondijk, J. J.
    Spijkman, M.
    Torricelli, F.
    Blom, P. W. M.
    de Leeuw, D. M.
    APPLIED PHYSICS LETTERS, 2012, 100 (02)
  • [10] Charge transport mechanisms in organic and microcrystalline silicon field-effect transistors
    Konezny, S. J.
    Bussac, M. N.
    Geiser, A.
    Zuppiroli, L.
    ORGANIC FIELD-EFFECT TRANSISTORS VI, 2007, 6658