Effects of Microphysics Parameterization Schemes on the simulation of a heavy rainfall event in Shanghai

被引:2
|
作者
Kan, Yu [1 ]
Liu, Chaoshun [1 ,2 ,3 ,4 ]
Qiao, Fengxue [1 ,2 ]
Liu, Yanan [1 ,2 ]
Gao, Wei [1 ,2 ,3 ,4 ]
Sun, Zhibin [3 ]
机构
[1] East China Normal Univ, Key Lab Geog Informat Sci, Minist Educ, Shanghai 200241, Peoples R China
[2] ECNU CSU Joint Res Inst New Energy & Environm, Shanghai 200062, Peoples R China
[3] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA
[4] Colorado State Univ, Dept Ecosyst Sci & Sustainabil, Ft Collins, CO 80523 USA
关键词
WRF; microphysics parameterization schemes; heavy rainfall; Shanghai;
D O I
10.1117/12.2237281
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A typical heavy rainfall event occurred in Shanghai on September 13, 2009 was simulated using the Weather Research and Forecasting Model (WRF) to study the impact of microphysics parameterization on heavy precipitation simulations. Sensitivity experiments were conducted using the cumulus parameterization scheme of Betts-Miller-Janjic (BMJ), but with three different microphysics schemes under three-way nested domains with horizontal resolutions of 36km, 12km and 4km. The results showed that all three microphysics schemes are able to capture the general pattern of this heavy rainfall event, but differ in simulating the location, center and intensity of precipitation. Specifically, the Lin scheme overestimated the rainfall intensity and simulated the rainfall location drifting northeastwards. However, the WSM5 scheme better simulated the rainfall location but had stronger intensity than the observation, while the WSM6 scheme better produced the rainfall intensity, but with an unrealistic rainfall area.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Evaluation of WRF Microphysics and Cumulus Parameterization Schemes in simulating a heavy rainfall event over Yangtze River Delta
    Kan, Yu
    Liu, Chaoshun
    Liu, Yanan
    Zhou, Cong
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY XII, 2015, 9610
  • [2] Modification of Microphysical Parameterization Schemes and Their Application in the Simulation of an Extremely Heavy Rainfall Event in Zhengzhou
    Yin, Lei
    Ping, Fan
    Cheng, Rui
    Mao, Jiahua
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2024, 129 (02)
  • [3] Simulation of a heavy rainfall event over Chennai in Southeast India using WRF: Sensitivity to microphysics parameterization
    Mohan, P. Reshmi
    Srinivas, C., V
    Yesubabu, V
    Baskaran, R.
    Venkatraman, B.
    ATMOSPHERIC RESEARCH, 2018, 210 : 83 - 99
  • [4] Effects of land surface schemes on the simulation of a heavy rainfall event by WRF
    Zeng Xin-Min
    Wu Zhi-Huang
    Song Shuai
    Xiong Shi-Yan
    Zheng Yi-Qun
    Zhou Zu-Gang
    Liu Hua-Qiang
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2012, 55 (01): : 16 - 28
  • [5] Assessment of various cumulus parameterization schemes for the simulation of very heavy rainfall event based on optimal ensemble approach
    Budakoti, Sachin
    Singh, Charu
    Pal, P. K.
    ATMOSPHERIC RESEARCH, 2019, 218 : 195 - 206
  • [6] Impact of cloud microphysics and cumulus parameterization on simulation of heavy rainfall event during 7-9 October 2007 over Bangladesh
    Alam, M. Mahbub
    JOURNAL OF EARTH SYSTEM SCIENCE, 2014, 123 (02) : 259 - 279
  • [7] Impact of cloud microphysics and cumulus parameterization on simulation of heavy rainfall event during 7-9 October 2007 over Bangladesh
    Mahbub Alam M.
    Journal of Earth System Science, 2014, 123 (2) : 259 - 279
  • [8] IMPACTS OF DIABATIC PHYSICS PARAMETERIZATION SCHEMES ON MESOSCALE HEAVY RAINFALL SHORTRANGE SIMULATION
    陈静
    薛纪善
    颜宏
    ActaMeteorologicaSinica, 2004, 18 (01) : 51 - 72
  • [9] IMPACTS OF DIABATIC PHYSICS PARAMETERIZATION SCHEMES ON MESOSCALE HEAVY RAINFALL SHORTRANGE SIMULATION
    陈静
    薛纪善
    颜宏
    Journal of Meteorological Research, 2004, (01) : 51 - 72
  • [10] Comparison of three microphysics parameterization schemes in the WRF model for an extreme rainfall event in the coastal metropolitan City of Guangzhou, China
    Huang, Yongjie
    Wang, Yaping
    Xue, Lulin
    Wei, Xiaolin
    Zhang, Lina
    Li, Huaiyu
    ATMOSPHERIC RESEARCH, 2020, 240