Delineation of Management Zones for Southern Root-Knot Nematode using Fuzzy Clustering of Terrain and Edaphic Field Characteristics

被引:6
|
作者
Ortiz, B. V. [1 ]
Sullivan, D. G. [2 ]
Perry, C. [3 ]
Vellidis, G. [4 ]
机构
[1] Auburn Univ, Dept Agron & Soils, Auburn, AL 36849 USA
[2] Turfscout, Tifton, GA USA
[3] Univ Georgia, Camila, GA USA
[4] Univ Georgia, Tifton, GA USA
关键词
Apparent soil electrical conductivity (ECa); cotton; fuzzy clustering; management zones; meloidogyne incognita; precision agriculture; spatial variability; site-specific management; southern root-knot nematodes; SITE-SPECIFIC MANAGEMENT; SOIL ELECTRICAL-CONDUCTIVITY; SOYBEAN CYST-NEMATODE; MELOIDOGYNE-INCOGNITA; HETERODERA-GLYCINES; SPATIAL-DISTRIBUTION; YIELD; CLASSIFICATION; COTTON; REFLECTANCE;
D O I
10.1080/00103624.2011.591471
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Management zones (MZs) for southern root-knot nematode (RKN) from the integration of terrain (TR) and edaphic (ED) field features might facilitate variable rate nematicide applications. This study was conducted on 11 coastal plain fields in the USA. The relationships between RKN populations and five soil ED and TR attributes (apparent soil electrical conductivity [shallow (ECa-s) and deep (ECa-d)], elevation (EL), slope (SL), and changes in bare soil reflectance) were analyzed using canonical correlation. Using two ED and TR data sets, canonical predictors were used for zone delineation. Although the results showed that the zones with RKN population above the RKN field average were associated with the lowest values of ECa-s, ECa-d, normalized difference vegetation index (NDVI), and SL with respect to field average values, zone segregation was enough using ECa-s and ECa-d data. The results suggest the potential for using soil properties to identify RKN risk zones.
引用
收藏
页码:1972 / 1994
页数:23
相关论文
共 48 条
  • [1] Impact and management challenges of the Southern root-knot nematode
    Faske, T.
    PHYTOPATHOLOGY, 2023, 113 (01)
  • [2] Response of watermelon germplasm to southern root-knot nematode in field tests
    Ariss, Jennifer J.
    Thies, Judy A.
    Kousik, Chandrasekar S.
    Hassell, Richard L.
    HORTSCIENCE, 2008, 43 (03) : 622 - 623
  • [3] Grafting for Management of Southern Root-Knot Nematode, Meloidogyne incognita, in Watermelon
    Thies, Judy A.
    Ariss, Jennifer J.
    Hassell, Richard L.
    Olson, Steve
    Kousik, Chandrasekar S.
    Levi, Amnon
    PLANT DISEASE, 2010, 94 (10) : 1195 - 1199
  • [4] Evaluation of nematicides for southern root-knot nematode management in lima bean
    Jones, Jake G.
    Kleczewski, Nathan M.
    Desaeger, Johan
    Meyer, Susan L. F.
    Johnson, Gordon C.
    CROP PROTECTION, 2017, 96 : 151 - 157
  • [5] Evaluation of fluopyram for southern root-knot nematode management in tomato production in China
    Ji, Xiaoxue
    Li, Jingjing
    Dong, Bei
    Zhang, Huan
    Zhang, Shouan
    Qiao, Kang
    CROP PROTECTION, 2019, 122 : 84 - 89
  • [6] Management zones delineation using fuzzy clustering techniques in grapevines
    A. Tagarakis
    V. Liakos
    S. Fountas
    S. Koundouras
    T. A. Gemtos
    Precision Agriculture, 2013, 14 : 18 - 39
  • [7] Management zones delineation using fuzzy clustering techniques in grapevines
    Tagarakis, A.
    Liakos, V.
    Fountas, S.
    Koundouras, S.
    Gemtos, T. A.
    PRECISION AGRICULTURE, 2013, 14 (01) : 18 - 39
  • [8] Managing Southern Root-knot Nematode in Kentucky High Tunnels Using Grafted Tomato
    Bajek, Victoria
    Rudolph, Rachel E.
    HORTSCIENCE, 2023, 58 (06) : 704 - 713
  • [9] Management of Root-knot Nematode in High Tunnels Using Grafted Tomato Rootstock
    Bajek, Victoria
    Rudolph, Rachel
    HORTSCIENCE, 2022, 57 (09) : S159 - S160
  • [10] Management of root-knot nematodes in the northern Delta using Telone II soil fumigant and root-knot nematode resistant cotton varieties
    Haygood, Robert A.
    McPherson, Mustafa
    Jones, Andrea
    PHYTOPATHOLOGY, 2017, 107 (03) : 5 - 6