Pulsatile electroosmotic flow of a Maxwell fluid in a parallel flat plate microchannel with asymmetric zeta potentials

被引:19
|
作者
Peralta, M. [1 ]
Bautista, O. [1 ]
Mendez, F. [2 ]
Bautista, E. [1 ]
机构
[1] Inst Politecn Nacl, Secc Estudios Posgrad & Invest ESIME Azcapotzalco, Ciudad De Mexico 02250, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ingn, Ciudad De Mexico 04510, Mexico
关键词
pulsatile electroosmotic flow (PEOF); flat plate microchannel; asymmetric zeta potential; Maxwell fluid; SLIT MICROCHANNEL; MICROCAPILLARY; ENHANCEMENT; TRANSPORT; PIPE;
D O I
10.1007/s10483-018-2328-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The pulsatile electroosmotic flow (PEOF) of a Maxwell fluid in a parallel flat plate microchannel with asymmetric wall zeta potentials is theoretically analyzed. By combining the linear Maxwell viscoelastic model, the Cauchy equation, and the electric field solution obtained from the linearized Poisson-Boltzmann equation, a hyperbolic partial differential equation is obtained to derive the flow field. The PEOF is controlled by the angular Reynolds number, the ratio of the zeta potentials of the microchannel walls, the electrokinetic parameter, and the elasticity number. The main results obtained from this analysis show strong oscillations in the velocity profiles when the values of the elasticity number and the angular Reynolds number increase due to the competition among the elastic, viscous, inertial, and electric forces in the flow.
引用
收藏
页码:667 / 684
页数:18
相关论文
共 50 条
  • [1] Pulsatile electroosmotic flow of a Maxwell fluid in a parallel flat plate microchannel with asymmetric zeta potentials
    M.PERALTA
    O.BAUTISTA
    F.MéNDEZ
    E.BAUTISTA
    Applied Mathematics and Mechanics(English Edition), 2018, 39 (05) : 667 - 684
  • [2] Pulsatile electroosmotic flow of a Maxwell fluid in a parallel flat plate microchannel with asymmetric zeta potentials
    M. Peralta
    O. Bautista
    F. Méndez
    E. Bautista
    Applied Mathematics and Mechanics, 2018, 39 : 667 - 684
  • [3] Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials
    Peralta, M.
    Arcos, J.
    Mendez, F.
    Bautista, O.
    FLUID DYNAMICS RESEARCH, 2017, 49 (03)
  • [4] Transient electroosmotic flow of Maxwell fluids in a slit microchannel with asymmetric zeta potentials
    Escandon, J.
    Jimenez, E.
    Hernandez, C.
    Bautista, O.
    Mendez, F.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2015, 53 : 180 - 189
  • [5] Alternating Current Electroosmotic Flow of Maxwell Fluid in a Parallel Plate Microchannel with Sinusoidal Roughness
    Chang, Long
    Zhao, Guangpu
    Buren, Mandula
    Sun, Yanjun
    Jian, Yongjun
    MICROMACHINES, 2024, 15 (01)
  • [6] Effect of zeta potential in fractional pulsatile electroosmotic flow of Maxwell fluid
    Akhtar, Shehraz
    Jamil, Saba
    Shah, Nehad Ali
    Chung, Jae Dong
    Tufail, Rabia
    CHINESE JOURNAL OF PHYSICS, 2022, 76 : 59 - 67
  • [7] Pulsatile electroosmotic flow in a microchannel with asymmetric wall zeta potentials and its effect on mass transport enhancement and mixing
    Medina, I.
    Toledo, M.
    Mendez, F.
    Bautista, O.
    CHEMICAL ENGINEERING SCIENCE, 2018, 184 : 259 - 272
  • [8] ANALYSIS OF A VISCOELASTIC FLUID FLOW IN A MICROCHANNEL WITH ASYMMETRIC ZETA POTENTIALS UNDER A COMBINATION OF ELECTROOSMOTIC AND MAGNETOHYDRODYNAMIC DRIVEN FORCES
    Escandon, Juan P.
    Bautista, Oscar E.
    Mendez, Federico
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, 2014, 2014,
  • [9] Start-up electroosmotic flow of Maxwell fluids in a rectangular microchannel with high zeta potentials
    Jimenez, E.
    Escandon, J.
    Bautista, O.
    Mendez, F.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2016, 227 : 17 - 29
  • [10] Startup electroosmotic flow of a viscoelastic fluid characterized by Oldroyd-B model in a rectangular microchannel with symmetric and asymmetric wall zeta potentials
    Kaushik, P.
    Chakraborty, Suman
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2017, 247 : 41 - 52