Inverse design of grafted nanoparticles for targeted self-assembly

被引:14
|
作者
Chao, Huikuan [1 ]
Riggleman, Robert A. [1 ]
机构
[1] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA
来源
基金
美国国家科学基金会;
关键词
POLYMER NANOCOMPOSITES; EVOLUTION STRATEGY; MATRIX; DISPERSION; PARTICLES; NANORODS; BLENDS; BRUSH;
D O I
10.1039/c7me00081b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two dimensional nanoparticle lattices can exhibit unique optical, electrical, and chemical properties giving rise to emerging applications for photovoltaic conversion, electronics and optical devices. In many applications, it is useful to be able to control the particle spacing, the crystal lattice formed, and the local composition of the lattice by co-locating nanoparticles of varying chemistry. However, control over all of these variables requires exquisite control over the interparticle interactions, and a large number of degrees of freedom affect the interactions. Achieving a particular structure by design requires solving the inverse-design problem, where one must optimize the chemistry to meet the structure or property that is desired. In recent years, a variety of examples have shown that one can finely control the interactions between nanoparticles through the use of polymers grafted onto the nanoparticle surface and by controlling the grafting density and the distribution of molecular weights on the nanoparticle surface. In this work, we take the first steps on solving the inverse design problem using an approach that explicitly accounts for the chemistry on the surfaces of the particles. Using two-dimensional hybrid particle/field theory calculations and an evolutionary design strategy, we design polymer grafted nanoparticles that self-assemble into targeted square, honeycomb, and kagome lattices. We optimize both the length and grafting density of the polymers grafted to the nanoparticles, and we show that our design strategies are stable over a range of nanoparticle concentrations. Finally, we show that three-body interactions are critical for stabilizing targeted structures.
引用
收藏
页码:214 / 222
页数:9
相关论文
共 50 条
  • [1] Inverse optimization techniques for targeted self-assembly
    Torquato, Salvatore
    SOFT MATTER, 2009, 5 (06) : 1157 - 1173
  • [2] Polydispersity dominates the self-assembly of polymer grafted nanoparticles
    Kumar, Sanat
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [3] Self-assembly of polymer-grafted nanoparticles for membrane separations
    Hallinan, Daniel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [4] Anisotropic self-assembly of spherical polymer-grafted nanoparticles
    Akcora, Pinar
    Liu, Hongjun
    Kumar, Sanat K.
    Moll, Joseph
    Li, Yu
    Benicewicz, Brian C.
    Schadler, Linda S.
    Acehan, Devrim
    Panagiotopoulos, Athanassios Z.
    Pryamitsyn, Victor
    Ganesan, Venkat
    Ilavsky, Jan
    Thiyagarajan, Pappanan
    Colby, Ralph H.
    Douglas, Jack F.
    NATURE MATERIALS, 2009, 8 (04) : 354 - U121
  • [5] Self-assembly of polymer-grafted nanoparticles in thin films
    Lafitte, Thomas
    Kumar, Sanat K.
    Panagiotopoulos, Athanassios Z.
    SOFT MATTER, 2014, 10 (05) : 786 - 794
  • [6] Vesicular self-assembly of copolymer-grafted nanoparticles with anisotropic shapes
    Dong, Wenhao
    Yang, Zhimao
    He, Jie
    Kong, Chuncai
    Nie, Zhihong
    SOFT MATTER, 2023, 19 (04) : 634 - 639
  • [7] Modeling the anisotropic self-assembly of spherical polymer-grafted nanoparticles
    Pryamtisyn, Victor
    Ganesan, Venkat
    Panagiotopoulos, Athanassios Z.
    Liu, Hongjun
    Kumar, Sanat K.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (22):
  • [8] Directed self-assembly of amphiphilic polymer-grafted silica nanoparticles
    Zheng, Yang
    Benicewicz, Brian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [9] Self-Assembly of Monodisperse versus Bidisperse Polymer-Grafted Nanoparticles
    Zhao, Dan
    Di Nicola, Matteo
    Khani, Mohammad M.
    Jestin, Jacques
    Benicewicz, Brian C.
    Kumar, Sanat K.
    ACS MACRO LETTERS, 2016, 5 (07): : 790 - 795
  • [10] Self-assembly of grafted nanoparticles in the lamellar mesophase of a symmetric triblock copolymer
    Gupta, Supriya
    Chokshi, Paresh
    SOFT MATTER, 2019, 15 (38) : 7623 - 7634