Compression of GPS trajectories

被引:19
|
作者
Chen, Minjie [1 ]
Xu, Mantao [2 ]
Franti, Pasi [1 ]
机构
[1] Univ Eastern Finland, Helsinki, Finland
[2] Shanghai Dianji Univ, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/DCC.2012.14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Enormous amounts of GPS trajectories, which record users' spatial and temporal information, are collected by geo-positioning mobile phones in recent years. The massive volumes of trajectory data bring about heavy burdens for both network transmission and data storage. To overcome these difficulties, a number of compression algorithms have been proposed by reducing the number of points in the trajectory data. But these algorithms lack a rigorous investigation on how to encode the reduced trajectories. In this paper, we propose an algorithm that optimizes both the trajectory simplification and the coding procedure using the quantized data. The underlying algorithm is also compared with the existing methods across 640 trajectories from Microsoft Geolife dataset using synchronous Euclidean distance (SED) as the error metrics. Experimental results show that the proposed method saves 60% of compression cost against the current state of the art compression algorithms.
引用
收藏
页码:62 / 71
页数:10
相关论文
共 50 条
  • [1] Compression of GPS Trajectories using Optimized Approximation
    Chen, Minjie
    Xu, Mantao
    Fraenti, Pasi
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 3180 - 3183
  • [2] Noise Patterns in GPS Trajectories
    Hendawi, Abdeltawab
    Shen, James
    Sabbineni, Sree Sindhu
    Song, Yaxiao
    Cao, Peiwei
    Zhang, Zhihong
    Krumm, John
    Ali, Mohamed
    2020 21ST IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2020), 2020, : 178 - 185
  • [3] Efficient Compression and Indexing of Trajectories
    Brisaboa, Nieves R.
    Gagie, Travis
    Gomez-Brandon, Adrian
    Navarro, Gonzalo
    Parama, Jose R.
    STRING PROCESSING AND INFORMATION RETRIEVAL (SPIRE 2017), 2017, 10508 : 103 - 115
  • [4] Accelerated Map Matching for GPS Trajectories
    Dogramadzi, Marko
    Khan, Aftab
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (05) : 4593 - 4602
  • [5] Discovering Corridors From GPS Trajectories
    Zygouras, Nikolaos
    Gunopulos, Dimitrios
    25TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2017), 2017,
  • [6] Is Medoid Suitable for Averaging GPS Trajectories?
    Jimoh, Biliaminu
    Mariescu-Istodor, Radu
    Franti, Pasi
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (02)
  • [7] Identifying Urban Intersections with GPS Trajectories
    Gao Y.
    Wang D.
    Feng H.
    Shi Y.
    Duan Z.
    Data Analysis and Knowledge Discovery, 2019, 3 (11) : 24 - 34
  • [8] GPS Trajectory Compression Algorithm
    Reyes Zambrano, Gary
    COMPUTER AND COMMUNICATION ENGINEERING, ICCCE 2018, 2019, 959 : 57 - 69
  • [9] Generalization Aware Compression of Molecular Trajectories
    Anowar, Md Hasan
    Shamail, Abdullah
    Wang, Xiaoyu
    Trajcevski, Goce
    Murad, Sohail
    Jameson, Cynthia J.
    Khokhar, Ashfaq
    ADVANCES IN DATABASES AND INFORMATION SYSTEMS, ADBIS 2022, 2022, 13389 : 270 - 284
  • [10] Compression of Vehicle Trajectories with a Variational Autoencoder
    Rakos, Oliver
    Aradi, Szilard
    Becsi, Tamas
    Szalay, Zsolt
    APPLIED SCIENCES-BASEL, 2020, 10 (19): : 1 - 17