Robust best choice problem

被引:2
|
作者
Obradovic, Lazar [1 ,2 ]
机构
[1] Bielefeld Univ, Ctr Math Econ, Bielefeld, Germany
[2] Univ Montenegro, Fac Sci & Math, Podgorica, Montenegro
关键词
Optimal stopping; Best choice problem; Secretary problem; Model uncertainty; Ambiguity aversion; FULL-INFORMATION;
D O I
10.1007/s00186-020-00719-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a robust version of thefull information best choiceproblem: there is model uncertainty, represented by a set of priors, about the measure driving the observed process. We propose a general construction of the set of priors that we use to solve the problem in the setting of Riedel (Econometrica 77(3):857-908, 2009). As in the classical case, it is optimal to stop if the current observation is a running maximum that exceeds certain decreasing thresholds. We characterize the history dependent minimizing measure and perform sensitivity analysis on two examples.
引用
收藏
页码:435 / 460
页数:26
相关论文
共 50 条
  • [1] Robust best choice problem
    Lazar Obradović
    Mathematical Methods of Operations Research, 2020, 92 : 435 - 460
  • [2] GENERALIZATION OF BEST CHOICE PROBLEM
    NIKOLAEV, ML
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1977, 22 (01) : 187 - 190
  • [3] NEW VERSION OF BEST CHOICE PROBLEM
    COWAN, R
    ZABCZYK, J
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1976, 24 (09): : 773 - 778
  • [4] The best choice problem under ambiguity
    Chudjakow, Tatjana
    Riedel, Frank
    ECONOMIC THEORY, 2013, 54 (01) : 77 - 97
  • [5] The best choice problem under ambiguity
    Tatjana Chudjakow
    Frank Riedel
    Economic Theory, 2013, 54 : 77 - 97
  • [6] On a best choice problem for discounted sequences
    Kühne, R
    Rüschendorf, L
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2000, 45 (04) : 673 - 677
  • [7] ON A BEST CHOICE PROBLEM WITH PARTIAL INFORMATION
    PETRUCCELLI, JD
    ANNALS OF STATISTICS, 1980, 8 (05): : 1171 - 1174
  • [8] A best-choice problem with multiple selectors
    Glickman, H
    JOURNAL OF APPLIED PROBABILITY, 2000, 37 (03) : 718 - 735
  • [9] GAME PROBLEM OF THE BEST YACHT COURSE CHOICE
    Ukhobotov, V. I.
    Tseunova, I. V.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2009, (03): : 114 - 120
  • [10] The best choice problem for upward directed graphs
    Sulkowska, Malgorzata
    DISCRETE OPTIMIZATION, 2012, 9 (03) : 200 - 204