GAUSSIAN FIBONACCI AND GAUSSIAN LUCAS p-NUMBERS

被引:0
|
作者
Asci, Mustafa [1 ]
Gurel, Esref [1 ]
机构
[1] Pamukkale Univ, Dept Math, Sci & Arts Fac, Kinikli Denizli, Turkey
关键词
Fibonacci numbers; Gaussian Fibonacci numbers; Gaussian Fibonacci p-Numbers; Gaussian Lucas p-Numbers; GENERALIZED FIBONACCI; COMPLEX FIBONACCI; PARTIAL DERIVATIVES; GOLDEN SECTION; BINET FORMULAS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define and study the Gaussian Fibonacci and Gaussian Lucas p-numbers. We give generating functions, Binet formulas, explicit formulas, matrix representations and sums of Gaussian Fibonacci p-numbers by matrix methods. For p = 1 these Gaussian Fibonacci and Gaussian Lucas p numbers reduce to the Gaussian Fibonacci and the Gaussian Lucas number.
引用
收藏
页码:389 / 402
页数:14
相关论文
共 50 条
  • [1] Incomplete Fibonacci and Lucas p-numbers
    TasciA, Dursun
    Firengiz, Mirac Cetin
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) : 1763 - 1770
  • [2] On the bicomplex Gaussian Fibonacci and Gaussian Lucas numbers
    Kuloglu, Bahar
    Ozkan, ENGiN
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2022, 26 (01): : 33 - 43
  • [3] Generalized Hybrid Fibonacci and Lucas p-numbers
    Kocer, E. Gokcen
    Alsan, Huriye
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (04): : 948 - 955
  • [4] Generalized Hybrid Fibonacci and Lucas p-numbers
    E. Gokcen Kocer
    Huriye Alsan
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 948 - 955
  • [5] The continuous functions for the Fibonacci and Lucas p-numbers
    Stakhov, A
    Rozin, B
    CHAOS SOLITONS & FRACTALS, 2006, 28 (04) : 1014 - 1025
  • [6] Theory of Binet formulas for Fibonacci and Lucas p-numbers
    Stakhov, A
    Rozin, B
    CHAOS SOLITONS & FRACTALS, 2006, 27 (05) : 1162 - 1177
  • [7] On the m-extension of the Fibonacci and Lucas p-numbers
    Kocer, E. Gokcen
    Tuglu, Naim
    Stakhov, Alexey
    CHAOS SOLITONS & FRACTALS, 2009, 40 (04) : 1890 - 1906
  • [9] A STUDY ON THE FIBONACCI p-NUMBERS
    Halici, Serpil
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2009, 14 (M09): : 106 - 111
  • [10] Complex Fibonacci p-Numbers
    Tasci, Dursun
    Yalcin, Feyza
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2013, 4 (03): : 213 - 218