Predicting 3D lip shapes using facial surface EMG

被引:12
|
作者
Eskes, Merijn [1 ,2 ]
van Alphen, Maarten J. A. [1 ]
Balm, Alfons J. M. [1 ,3 ]
Smeele, Ludi E. [1 ,3 ]
Brandsma, Dieta [4 ,5 ]
van der Heijden, Ferdinand [1 ,2 ]
机构
[1] Netherlands Canc Inst, Dept Head & Neck Oncol & Surg, Amsterdam, Netherlands
[2] Univ Twente, MIRA Inst Biomed Engn & Tech Med, Enschede, Netherlands
[3] Acad Med Ctr, Dept Oral & Maxillofacial Surg, Amsterdam, Netherlands
[4] Netherlands Canc Inst, Dept Neurooncol, Amsterdam, Netherlands
[5] Slotervaart Hosp, Dept Neurol, Amsterdam, Netherlands
来源
PLOS ONE | 2017年 / 12卷 / 04期
关键词
ELECTROMYOGRAPHY; RECOGNITION; SURGERY; CANCER; MODEL;
D O I
10.1371/journal.pone.0175025
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aim The aim of this study is to prove that facial surface electromyography (sEMG) conveys sufficient information to predict 3D lip shapes. High sEMG predictive accuracy implies we could train a neural control model for activation of biomechanical models by simultaneously recording sEMG signals and their associated motions. Materials and methods With a stereo camera set-up, we recorded 3D lip shapes and simultaneously performed sEMG measurements of the facial muscles, applying principal component analysis (PCA) and a modified general regression neural network (GRNN) to link the sEMG measurements to 3D lip shapes. To test reproducibility, we conducted our experiment on five volunteers, evaluating several sEMG features and window lengths in unipolar and bipolar configurations in search of the optimal settings for facial sEMG. Conclusions The errors of the two methods were comparable. We managed to predict 3D lip shapes with a mean accuracy of 2.76 mm when using the PCA method and 2.78 mm when using modified GRNN. Whereas performance improved with shorter window lengths, feature type and configuration had little influence.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Hallucinating 3D facial shapes
    Pan, Gang
    Han, Song
    Wu, Zhaohui
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 3629 - +
  • [2] 3D Facial Expression Classification Using 3D Facial Surface Normals
    Ujir, Hamimah
    Spann, Michael
    Hipiny, Irwandi Hipni Mohamad
    8TH INTERNATIONAL CONFERENCE ON ROBOTIC, VISION, SIGNAL PROCESSING & POWER APPLICATIONS: INNOVATION EXCELLENCE TOWARDS HUMANISTIC TECHNOLOGY, 2014, 291 : 245 - 253
  • [3] 3D face recognition using shapes of facial curves
    Samir, Chafik
    Srivastava, Anuj
    Daoudi, Mohamed
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5791 - 5794
  • [4] Facial Analysis of Patients with Unilateral or Bilateral Cleft Lip and Palate Using 3D Stereophotogrammetry
    Nogueira, Vanessa Ota
    Neves, Maria Carolina
    Neppelenbroek, Karin
    Oliveira, Thais Marchini
    Sforza, Chiarella
    Soares, Simone
    CLEFT PALATE CRANIOFACIAL JOURNAL, 2024,
  • [5] 3D FACIAL MESH DETECTION USING GEOMETRIC SALIENCY OF SURFACE
    Li, Yaochen
    Liu, Yuehu
    Wang, Yuanchun
    Wu, Zhengwang
    Yang, Yang
    2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2011,
  • [6] Predicting 3D lip movement using facial sEMG: a first step towards estimating functional and aesthetic outcome of oral cancer surgery
    Merijn Eskes
    Maarten J. A. van Alphen
    Ludi E. Smeele
    Dieta Brandsma
    Alfons J. M. Balm
    Ferdinand van der Heijden
    Medical & Biological Engineering & Computing, 2017, 55 : 573 - 583
  • [7] Learning to Reconstruct Symmetric Shapes using Planar Parameterization of 3D Surface
    Jain, Hardik
    Woellhaf, Manuel
    Hellwich, Olaf
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 4133 - 4140
  • [8] Predicting 3D lip movement using facial sEMG: a first step towards estimating functional and aesthetic outcome of oral cancer surgery
    Eskes, Merijn
    van Alphen, Maarten J. A.
    Smeele, Ludi E.
    Brandsma, Dieta
    Balm, Alfons J. M.
    van der Heijden, Ferdinand
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2017, 55 (04) : 573 - 583
  • [9] Positive and negative myoclonus monitoring using ambulatory surface EMG and 3D accelerometry
    Rissanen, S.
    Sinokki, A.
    Hypponen, J.
    Saisanen, L.
    Silvennoinen, K.
    Karjalainen, P.
    Mervaala, E.
    Hadj-Allal, Z.
    Kalviainen, R.
    MOVEMENT DISORDERS, 2023, 38 : S792 - S792
  • [10] Defining the Angles' Range in Ergonomics Assessment Using 3D Cameras and Surface EMG
    Moar, Jose
    Ramos, Delfina
    Arezes, Pedro
    ADVANCES IN SAFETY MANAGEMENT AND HUMAN FACTORS, 2016, 491 : 463 - 472