Superior initial coulombic efficiency through graphene quantum dot decorated on MoS2

被引:12
|
作者
Sim, Glenn Joey [1 ,2 ]
Huang, Zhi Xiang [1 ,2 ]
Wang, Ye [1 ,3 ]
Kong, Dezhi [1 ]
Huang, Shaozhuan [1 ]
Liu, Bo [1 ]
Yang, Hui Ying [1 ]
机构
[1] Singapore Univ Technol & Design, Pillar Engn Prod Dev, 8 Somapah Rd, Singapore 487372, Singapore
[2] Airbus Grp Innovat Singapore, 110 Seletar Aerosp View, Singapore 797562, Singapore
[3] Zhengzhou Univ, Dept Phys & Engn, Minist Educ, Key Lab Mat Phys, Zhengzhou 450052, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
3D graphene; Molybdenum disulfide; Graphene quantum dots; Sodium ion batteries; SODIUM-ION BATTERIES; HIGH-PERFORMANCE ANODE; ELECTROCHEMICAL PERFORMANCE; CARBON NANOFIBERS; HIGH-CAPACITY; CYCLE LIFE; LITHIUM; ELECTRODE; COMPOSITES; CHALLENGES;
D O I
10.1016/j.flatc.2018.04.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molybdenum disulfide (MoS2) nanoflower was grown onto 3D graphene (3DG) by a simple hydrothermal method. Subsequently, Nitrogen doped graphene quantum dots (NGQDs) were decorated on the surface of MoS2 to further enhance the electrochemical performance through a one-step electrodeposition method. The NGQDs decorated MoS2 on 3DG (NGQDs@MoS2/3DG) is further employed directly as a binder free anode of sodium ion batteries (SIBs). NGQD@MoS2/3DG nanoarchitecture delivers a specific capacity of 638 mA h g(-1) at 50 mA g(-1) and an ultra-high first cycle coulombic efficiency of 85.4%. The outstanding Na+ storage properties of NGQD@ MoS2/3DG was attributed to the synergistic effect among the conducive 3DG carbon matrix, MoS2 nanoflowers and decorated NGQDs. These results obtained potentially unveil a path for the development of excellent electrochemical performance with high initial coulombic efficiency of SIBs.
引用
收藏
页码:8 / 14
页数:7
相关论文
共 50 条
  • [1] Enhanced photoresponse of ZnO quantum dot-decorated MoS2 thin films
    Nazir, Ghazanfar
    Khan, M. Farooq
    Akhtar, Imtisal
    Akbar, Kamran
    Gautam, Praveen
    Noh, Hwayong
    Seo, Yongho
    Chun, Seung-Hyun
    Eom, Jonghwa
    RSC ADVANCES, 2017, 7 (27): : 16890 - 16900
  • [2] MoS2 Quantum Dot-Interspersed Exfoliated MoS2 Nanosheets
    Gopalakrishnan, Deepesh
    Damien, Dijo
    Shaijumon, Manikoth M.
    ACS NANO, 2014, 8 (05) : 5297 - 5303
  • [3] MoS2 quantum dot-decorated MXene nanosheets as efficient hydrogen evolution electrocatalysts
    Huang, Huajie
    Xue, Ya
    Xie, Yongshuai
    Yang, Ying
    Yang, Lu
    He, Haiyan
    Jiang, Quanguo
    Ying, Guobing
    INORGANIC CHEMISTRY FRONTIERS, 2022, 9 (06) : 1171 - 1178
  • [4] Imaging quantum dot formation in MoS2 nanostructures
    Bhandari, S.
    Wang, K.
    Watanabe, K.
    Taniguchi, T.
    Kim, P.
    Westervelt, R. M.
    NANOTECHNOLOGY, 2018, 29 (42)
  • [5] Synergy ascension of SnS/MoS2 binary metal sulfides on initial coulombic efficiency and stable capacity for lithium storage
    Pan, Kai
    Sun, Yanna
    He, Xingcun
    Lai, Feiyan
    Wang, Hongqiang
    Liang, Libo
    Li, Qingyu
    Zhang, Xiaohui
    Ji, Hongbing
    RSC ADVANCES, 2021, 11 (28) : 17332 - 17339
  • [6] Flexible phototransistors based on graphene nanoribbon decorated with MoS2 nanoparticles
    Asad, Mohsen
    Salimian, Sedigheh
    Sheikhi, Mohammad Hossein
    Pourfath, Mahdi
    SENSORS AND ACTUATORS A-PHYSICAL, 2015, 232 : 285 - 291
  • [7] Graphene Quantum Dots Doping of MoS2 Monolayers
    Li, Ziwei
    Ye, Ruquan
    Feng, Rui
    Kang, Yimin
    Zhu, Xing
    Tour, James M.
    Fang, Zheyu
    ADVANCED MATERIALS, 2015, 27 (35) : 5235 - 5240
  • [8] Valley qubit in a gated MoS2 monolayer quantum dot
    Pawlowski, J.
    Zebrowski, D.
    Bednarek, S.
    PHYSICAL REVIEW B, 2018, 97 (15)
  • [9] In-situ synthesis and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite
    Wang, Congxu
    Jin, Jianli
    Sun, Youyi
    Yao, Junru
    Zhao, Guizhe
    Liu, Yaqing
    CHEMICAL ENGINEERING JOURNAL, 2017, 327 : 774 - 782
  • [10] High-sensitive humidity sensor based on MoS2/graphene oxide quantum dot nanocomposite
    Guo, Lifang
    Li, Xiaoyu
    Li, Wenxiang
    Gou, Chenchen
    Zheng, Meifang
    Zhang, Yong
    Chen, Zhiyu
    Hong, Yu
    Materials Chemistry and Physics, 2022, 287