Informed classification of sweeteners/bitterants compounds via explainable machine learning

被引:11
|
作者
Maroni, Gabriele [1 ]
Pallante, Lorenzo [2 ]
Di Benedetto, Giacomo [3 ]
Deriu, Marco A.
Piga, Dario [1 ]
Grasso, Gianvito [1 ,4 ]
机构
[1] Dalle Molle Inst Artificial Intelligence IDSIA USI, SUPSI, Via La Santa 1, CH-6962 Lugano, Switzerland
[2] Politecn Torino, Polito BIO MedLab, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[3] 7HC Srl, Via Giovanni Paisiello 55, I-00198 Rome, Italy
[4] Univ Svizzera Italiana USI, Scuola Univ Professionale Svizzera Italiana SUPSI, Ist Dalle Molle Studi SullIntelligenza Artificial, CH-6928 Manno, Switzerland
来源
关键词
Sweet; bitter dichotomy; Explainable machine learning; Natural compounds; Sweetener; Bitterants; TASTE RECEPTORS; PREDICTION; SWEET; DIHYDROCHALCONE; BITTERNESS; CELLS;
D O I
10.1016/j.crfs.2022.11.014
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Perception of taste is an emergent phenomenon arising from complex molecular interactions between chemical compounds and specific taste receptors. Among all the taste perceptions, the dichotomy of sweet and bitter tastes has been the subject of several machine learning studies for classification purposes. While previous studies have provided accurate sweeteners/bitterants classifiers, there is ample scope to enhance these models by enriching the understanding of the molecular basis of bitter-sweet tastes. Towards these goals, our study focuses on the development and testing of several machine learning strategies coupled with the novel SHapley Additive ex-Planations (SHAP) for a rational sweetness/bitterness classification. This allows the identification of the chemical descriptors of interest by allowing a more informed approach toward the rational design and screening of sweeteners/bitterants. To support future research in this field, we make all datasets and machine learning models publicly available and present an easy-to-use code for bitter-sweet taste prediction.
引用
收藏
页码:2270 / 2280
页数:11
相关论文
共 50 条
  • [1] Explainable Machine Learning via Argumentation
    Prentzas, Nicoletta
    Pattichis, Constantinos
    Kakas, Antonis
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT III, 2023, 1903 : 371 - 398
  • [2] Explainable Machine Learning on Classification of Healthy and Unhealthy Hair
    Chow, Weng Yan
    Heng, Wei Wei
    Abdul-Kadir, Nurul Ashikin
    Nadaraj, Hrikeshraj
    2022 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBERNETICS TECHNOLOGY & APPLICATIONS (ICICYTA), 2022, : 162 - 167
  • [3] Explainable Machine Learning for Vitamin A Deficiency Classification in Schoolchildren
    Ramesh, Jayroop
    Sankalpa, Donthi
    Khamis, Amar
    Sagahyroon, Assim
    Aloul, Fadi
    2022 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) JOINTLY ORGANISED WITH THE IEEE-EMBS INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN'22), 2022,
  • [4] Classification of Tremor and Myoclonus: An Explainable Machine Learning Approach
    Van der Brandhof, E.
    Tuitert, I.
    Van der Stouwe, A. M.
    Elting, J. W.
    Dalenberg, J.
    Biehl, M.
    Tijssen, M.
    MOVEMENT DISORDERS, 2024, 39 : S724 - S724
  • [5] Classification of Tremor and Myoclonus: An Explainable Machine Learning Approach
    Van der Brandhof, E.
    Tuitert, I.
    Van der Stouwe, A. M.
    Elting, J. W.
    Dalenberg, J.
    Biehl, M.
    Tijssen, M.
    MOVEMENT DISORDERS, 2024, 39 : S724 - S724
  • [6] Explainable Machine Learning Models for Swahili News Classification
    Murindanyi, Sudi
    Brian, Yiiki Afedra
    Katumba, Andrew
    Nakatumba-Nabende, Joyce
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL, NLPIR 2023, 2023, : 12 - 18
  • [7] Explainable Ensemble Machine Learning Method for Credit Risk Classification
    Ben Ghozzi, Sirine
    Ben HajKacem, Mohamed Aymen
    Essoussi, Nadia
    2024 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS, INISTA, 2024,
  • [8] PointHop: An Explainable Machine Learning Method for Point Cloud Classification
    Zhang, Min
    You, Haoxuan
    Kadam, Pranav
    Liu, Shan
    Kuo, C-C Jay
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (07) : 1744 - 1755
  • [9] Explainable Software Defects Classification Using SMOTE and Machine Learning
    Jude A.
    Uddin J.
    Annals of Emerging Technologies in Computing, 2024, 8 (01) : 35 - 49
  • [10] An explainable machine learning approach for Alzheimer's disease classification
    Alatrany, Abbas Saad
    Khan, Wasiq
    Hussain, Abir
    Kolivand, Hoshang
    Al-Jumeily, Dhiya
    SCIENTIFIC REPORTS, 2024, 14 (01)