Roughness of tempered exponential dichotomies for infinite-dimensional random difference equations

被引:51
|
作者
Zhou, Linfeng [1 ,2 ]
Lu, Kening [2 ]
Zhang, Weinian [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R China
[2] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
基金
美国国家科学基金会;
关键词
Random dynamical system; Tempered exponential dichotomy; Roughness; Cocycle; DISCRETE ADMISSIBILITY; EVOLUTION-EQUATIONS; STABILITY QUESTION;
D O I
10.1016/j.jde.2013.02.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the roughness of tempered exponential dichotomies for linear random dynamical systems in Banach spaces. Such a dichotomy has a tempered bound and describes nonuniform hyperbolicity. We prove the roughness without assuming their invertibility and the integrability condition of the Multiplicative Ergodic Theorem. We give an explicit bound for the linear perturbation such that the dichotomy is persistent. We also obtain explicit forms for the exponent and the bound of tempered exponential dichotomy of the perturbed random system in terms of the original ones and the perturbations. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:4024 / 4046
页数:23
相关论文
共 50 条