Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau

被引:95
|
作者
Li, Fei [1 ,2 ]
Wan, Xin [3 ]
Wang, Huijun [4 ,5 ,6 ]
Orsolini, Yvan Joseph [7 ]
Cong, Zhiyuan [3 ,8 ]
Gao, Yongqi [2 ,6 ,9 ]
Kang, Shichang [8 ,10 ]
机构
[1] Univ Bergen, Geophys Inst, Bergen, Norway
[2] Bjerknes Ctr Climate Res, Bergen, Norway
[3] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Tibetan Environm Changes & Land Surface P, Beijing, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Minist Educ, Key Lab Meteorol Disaster, Nanjing, Peoples R China
[5] Chinese Acad Sci, Climate Change Res Ctr, Beijing, Peoples R China
[6] Chinese Acad Sci, Inst Atmospher Phys, Nansen Zhu Int Res Ctr, Beijing, Peoples R China
[7] NILU Norwegian Inst Air Res, Kjeller, Norway
[8] Chinese Acad Sci, CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing, Peoples R China
[9] Nansen Environm & Remote Sensing Ctr, Bergen, Norway
[10] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Cryosphere Sci, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
NAM CO; CARBONACEOUS AEROSOLS; OPTICAL DEPTH; BASE-LINE; CLIMATE; IMPACT; ALGORITHM; POLLUTION; MODE; SITE;
D O I
10.1038/s41558-020-0881-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aerosol transport from South Asia to the Tibetan Plateau (TP) peaks in the pre-monsoon period, but the controlling dynamics remain unclear. Observational analysis shows that low February Arctic sea ice boosts the Asian subtropical jet in April, which can loft aerosols over the Himalayas onto the TP. The Tibetan Plateau (TP) has recently been polluted by anthropogenic emissions transported from South Asia, but the mechanisms conducive to this aerosol delivery are poorly understood. Here we show that winter loss of Arctic sea ice over the subpolar North Atlantic boosts aerosol transport toward the TP in April, when the aerosol loading is at its climatological maximum and preceding the Indian summer monsoon onset. Low sea ice in February weakens the polar jet, causing decreased Ural snowpack via reduced transport of warm, moist oceanic air into the high-latitude Eurasian interior. This diminished snowpack persists through April, reinforcing the Ural pressure ridge and East Asian trough, segments of a quasi-stationary Rossby wave train extending across Eurasia. These conditions facilitate an enhanced subtropical westerly jet at the southern edge of the TP, invigorating upslope winds that combine with mesoscale updrafts to waft emissions over the Himalayas onto the TP.
引用
收藏
页码:1037 / +
页数:21
相关论文
共 50 条
  • [1] Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau
    Fei Li
    Xin Wan
    Huijun Wang
    Yvan Joseph Orsolini
    Zhiyuan Cong
    Yongqi Gao
    Shichang Kang
    Nature Climate Change, 2020, 10 : 1037 - 1044
  • [3] Natural causes of Arctic sea-ice loss
    Neil Swart
    Nature Climate Change, 2017, 7 : 239 - 241
  • [4] The complex response of Arctic aerosol to sea-ice retreat
    Browse, J.
    Carslaw, K. S.
    Mann, G. W.
    Birch, C. E.
    Arnold, S. R.
    Leck, C.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (14) : 7543 - 7557
  • [5] Natural causes of Arctic sea-ice loss
    Swart, Neil
    NATURE CLIMATE CHANGE, 2017, 7 (04) : 239 - 241
  • [6] THE POTENTIAL TRANSPORT OF POLLUTANTS BY ARCTIC SEA-ICE
    PFIRMAN, SL
    EICKEN, H
    BAUCH, D
    WEEKS, WF
    SCIENCE OF THE TOTAL ENVIRONMENT, 1995, 159 (2-3) : 129 - 146
  • [7] Glacial shortcut of Arctic sea-ice transport
    Staerz, Michael
    Gong, Xun
    Stein, Ruediger
    Darby, Dennis A.
    Kauker, Frank
    Lohmann, Gerrit
    EARTH AND PLANETARY SCIENCE LETTERS, 2012, 357 : 257 - 267
  • [8] Arctic sea-ice
    不详
    WEATHER, 2008, 63 (10) : 290 - 290
  • [9] The Effect of Arctic Sea-Ice Loss on Extratropical Cyclones
    Hay, Stephanie
    Priestley, Matthew D. K.
    Yu, Hao
    Catto, Jennifer L.
    Screen, James A.
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (17)
  • [10] Influence of Arctic sea-ice loss on the Greenland ice sheet climate
    Raymond Sellevold
    Jan T. M. Lenaerts
    Miren Vizcaino
    Climate Dynamics, 2022, 58 : 179 - 193