DEALING WITH SPATIAL NORMALIZATION ERRORS IN fMRI GROUP INFERENCE USING HIERARCHICAL MODELING

被引:0
|
作者
Keller, Merlin [1 ]
Roche, Alexis [2 ]
Tucholka, Alan [1 ,2 ]
Thirion, Bertrand [1 ,2 ]
机构
[1] CEA, Neurospin, Gif Sur Yvette, France
[2] INRIA, Saclay, France
关键词
Group analysis; hierarchical modeling; mixed effects; spatial uncertainty; Bayes factor; Metropolis within Gibbs; permutation test;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An important challenge in neuroimaging multi-subject studies is to take into account that different brains cannot be aligned perfectly. To this end, we extend the classical mass univariate model for group analysis to incorporate uncertainty on localization by introducing, for each subject, a spatial "jitter" variable to be marginalized out. We derive a Bayes factor to test for the mean population effect's sign in each voxel of a search volume, and discuss a Gibbs sampler to compute it. This Bayes factor, which generalizes the classical t-statistic, may be combined with a permutation test in order to control the frequentist false positive rate. Results on both simulated and experimental data suggest that this test may outperform conventional mass univariate tests in terms of detection power, while limiting the problem of overestimating the size of activity clusters.
引用
收藏
页码:1357 / 1374
页数:18
相关论文
共 50 条
  • [1] Simple group fMRI modeling and inference
    Mumford, Jeanette A.
    Nichols, Thomas
    NEUROIMAGE, 2009, 47 (04) : 1469 - 1475
  • [2] Intersubject analysis of fMRI data using spatial normalization
    Zeffiro, TA
    Eden, GF
    Woods, RP
    VanMeter, JW
    OPTICAL IMAGING OF BRAIN FUNCTION AND METABOLISM 2: PHYSIOLOGICAL BASIS AND COMPARISON TO OTHER FUNCTIONAL NEUROIMAGING METHODS, 1997, 413 : 235 - 240
  • [3] A Bayesian hierarchical framework for spatial modeling of fMRI data
    Bowman, F. DuBois
    Caffo, Brian
    Bassett, Susan Spear
    Kilts, Clinton
    NEUROIMAGE, 2008, 39 (01) : 146 - 156
  • [4] ICA-fNORM: spatial normalization of fMRI data using intrinsic group-ICA networks
    Khullar, Siddharth
    Michael, Andrew M.
    Cahill, Nathan D.
    Kiehl, Kent A.
    Pearlson, Godfrey
    Baum, Stefi A.
    Calhoun, Vince D.
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2011, 5
  • [5] Multilevel linear modelling for FMRI group analysis using Bayesian inference
    Woolrich, MW
    Behrens, TEJ
    Beckmann, CF
    Jenkinson, M
    Smith, SM
    NEUROIMAGE, 2004, 21 (04) : 1732 - 1747
  • [6] Active Spatial Positions Based Hierarchical Relation Inference for Group Activity Recognition
    Wu, Lifang
    Lang, Xianglong
    Xiang, Ye
    Chen, Changwen
    Li, Zun
    Wang, Zhuming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (06) : 2839 - 2851
  • [7] Modeling Brain Activation in fMRI Using Group MRF
    Ng, Bernard
    Hamarneh, Ghassan
    Abugharbieh, Rafeef
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (05) : 1113 - 1123
  • [8] Modeling Inter-Subject Variability in fMRI Activation Location: A Bayesian Hierarchical Spatial Model
    Xu, Lei
    Johnson, Timothy D.
    Nichols, Thomas E.
    Nee, Derek E.
    BIOMETRICS, 2009, 65 (04) : 1041 - 1051
  • [9] Using Hierarchical Bayesian Modeling to Enhance Statistical Inference on Contrast Sensitivity
    Zhao, Yukai
    Lesmes, Luis Andres
    Dorr, Michael
    Lu, Zhong-Lin
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2024, 13 (12):
  • [10] Estimation of fMRI responses related to epileptic discharges using Bayesian hierarchical modeling
    Cai, Zhengchen
    von Ellenrieder, Nicolas
    Koupparis, Andreas
    Khoo, Hui Ming
    Ikemoto, Satoru
    Tanaka, Masataka
    Abdallah, Chifaou
    Rammal, Saba
    Dubeau, Francois
    Gotman, Jean
    HUMAN BRAIN MAPPING, 2023, 44 (17) : 5982 - 6000