On certain properties of the spaces of order-preserving functionals

被引:11
|
作者
Albeverio, S. [2 ,3 ,4 ]
Ayupov, Sh. A. [1 ]
Zaitov, A. A. [1 ]
机构
[1] Uzbek Acad Sci, Inst Math & Informat Technol, Tashkent 100125, Uzbekistan
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[3] BiBoS, SFB 611, Bielefeld, Germany
[4] CERFIM Locarno, Locarno, Switzerland
关键词
tau-smooth order-preserving functional; Radon order-preserving functional; weight; density; weak density;
D O I
10.1016/j.topol.2008.05.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper it is proved that the functor O-tau of tau-smooth order preserving functionals and the functor OR of Radon order preserving functionals, do not change the weight of infinite Tychonoff spaces. It is shown that the density and the weak density of infinite Tychonoff spaces do not increase under these functors. Moreover, if X is a metric space with the second axiom of countability then the spaces O-tau (X) and O-R(X) are also metrizable. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1792 / 1799
页数:8
相关论文
共 50 条
  • [1] The functor of order-preserving functionals of finite degree
    Zaitov A.A.
    Journal of Mathematical Sciences, 2006, 133 (5) : 1602 - 1603
  • [2] On certain order-preserving transformation semigroups
    Zhang, Jia
    Luo, Yanfeng
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (07) : 2980 - 2995
  • [3] ON THE RANKS OF CERTAIN SEMIGROUPS OF ORDER-PRESERVING TRANSFORMATIONS
    GOMES, GMS
    HOWIE, JM
    SEMIGROUP FORUM, 1992, 45 (03) : 272 - 282
  • [4] On Order-Preserving Properties of Probability Metrics
    Claude Lefèvre
    Sergey Utev
    Journal of Theoretical Probability, 1998, 11 : 907 - 920
  • [5] On order-preserving properties of probability metrics
    Lefèvre, C
    Utev, S
    JOURNAL OF THEORETICAL PROBABILITY, 1998, 11 (04) : 907 - 920
  • [6] ω-base and Its Properties in L-fuzzy Order-preserving Operator Spaces
    Chen, Shui-Li
    Jianghan Shiyou Xueyuan Xuebao/Journal of Jianghan Petroleum Institute, 2003, 25 (03): : 143 - 145
  • [7] EXISTENCE OF AN ORDER-PRESERVING FUNCTION ON NORMALLY PREORDERED SPACES
    MEHTA, G
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 34 (01) : 141 - 147
  • [8] Order-Preserving Incomplete Suffix Trees and Order-Preserving Indexes
    Crochemore, Maxime
    Iliopoulos, Costas S.
    Kociumaka, Tomasz
    Kubica, Marcin
    Langiu, Alessio
    Pissis, Solon P.
    Radoszewski, Jakub
    Rytter, Wojciech
    Walen, Tomasz
    STRING PROCESSING AND INFORMATION RETRIEVAL (SPIRE 2013), 2013, 8214 : 84 - 95
  • [9] On order-preserving representations
    Ben Simon, G.
    Burger, M.
    Hartnick, T.
    Iozzi, A.
    Wienhard, A.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 94 : 525 - 544
  • [10] ORDER-PRESERVING ASSIGNMENTS
    PADBERG, M
    ALEVRAS, D
    NAVAL RESEARCH LOGISTICS, 1994, 41 (03) : 395 - 421