Thermal and Physical Characterization of PEG Phase Change Materials Enhanced by Carbon-Based Nanoparticles

被引:46
|
作者
Cabaleiro, David [1 ,2 ]
Hamze, Samah [2 ]
Fal, Jacek [3 ]
Marcos, Marco A. [1 ]
Estelle, Patrice [2 ]
Zyla, Gawel [3 ]
机构
[1] Univ Vigo, Fac Ciencias, Dept Fis Aplicada, Vigo 36310, Spain
[2] Univ Rennes, Lab Genie Civil & Genie Mecan, LGCGM, F-35000 Rennes, France
[3] Rzeszow Univ Technol, Dept Expt Phys, PL-35959 Rzeszow, Poland
关键词
NePCM; PEG400; carbon black; graphite; nano-diamond; solid-liquid phase change; thermal conductivity; surface tension; dynamic viscosity; density; CHANGE MATERIALS PCMS; LATENT-HEAT STORAGE; ENERGY-STORAGE; POLYETHYLENE-GLYCOL; CONDUCTIVITY ENHANCEMENT; SURFACE-TENSION; NANOFLUIDS; COMPOSITES; VISCOSITY; BEHAVIOR;
D O I
10.3390/nano10061168
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper presents the preparation and thermal/physical characterization of phase change materials (PCMs) based on poly(ethylene glycol) 400 g.mol(-1) and nano-enhanced by either carbon black (CB), a raw graphite/diamond nanomixture (G/D-r), a purified graphite/diamond nanomixture (G/D-p) or nano-Diamond nanopowders with purity grades of 87% or 97% (nD87 and nD97, respectively). Differential scanning calorimetry and oscillatory rheology experiments were used to provide an insight into the thermal and mechanical changes taking place during solid-liquid phase transitions of the carbon-based suspensions. PEG400-based samples loaded with 1.0 wt.% of raw graphite/diamond nanomixture (G/D-r) exhibited the lowest sub-cooling effect (with a reduction of similar to 2 K regarding neat PEG400). The influences that the type of carbon-based nanoadditive and nanoparticle loading (0.50 and 1.0 wt.%) have on dynamic viscosity, thermal conductivity, density and surface tension were also investigated in the temperature range from 288 to 318 K. Non-linear rheological experiments showed that all dispersions exhibited a non-Newtonian pseudo-plastic behavior, which was more noticeable in the case of carbon black nanofluids at low shear rates. The highest enhancements in thermal conductivity were observed for graphite/diamond nanomixtures (3.3-3.6%), while nano-diamond suspensions showed the largest modifications in density (0.64-0.66%). Reductions in surface tension were measured for the two nano-diamond nanopowders (nD87 and nD97), while slight increases (within experimental uncertainties) were observed for dispersions prepared using the other three carbon-based nanopowders. Finally, a good agreement was observed between the experimental surface tension measurements performed using a Du Nouy ring tensiometer and a drop-shape analyzer.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [1] Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage
    He, Meizhi
    Yang, Luwei
    Lin, Wenye
    Chen, Jiaxiang
    Mao, Xiang
    Ma, Zhenjun
    JOURNAL OF ENERGY STORAGE, 2019, 25
  • [2] Thermal performance of carbon-based microencapsulated phase change materials
    Abdullah, A. Z. I.
    Abdollah, M. F. B.
    Tee, B. T.
    Amiruddin, H.
    Yamin, A. K. Mat
    Tamaldin, N.
    PROCEEDINGS OF MECHANICAL ENGINEERING RESEARCH DAY 2015, 2015, : 17 - 18
  • [3] A review on carbon-based phase change materials for thermal energy storage
    Mishra, Raghvendra Kumar
    Verma, Kartikey
    Mishra, Vinayak
    Chaudhary, Babulal
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [4] Enhanced thermal performance of phase change mortar using multi-scale carbon-based materials
    Wang, Xiaonan
    Huang, Yuhan
    Shi, Long
    Zhang, Shishun
    Li, Wengui
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [5] Carbon-based porous materials for performance-enhanced composite phase change materials in thermal energy storage: Materials, fabrication and applications
    Hu, Lei
    Zhang, Li
    Cui, Wei
    An, Qinyou
    Ma, Ting
    Wang, Qiuwang
    Mai, Liqiang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 210 : 204 - 226
  • [6] Carbon-Based Composite Phase Change Materials for Thermal Energy Storage, Transfer, and Conversion
    Chen, Xiao
    Cheng, Piao
    Tang, Zhaodi
    Xu, Xiaoliang
    Gao, Hongyi
    Wang, Ge
    ADVANCED SCIENCE, 2021, 8 (09)
  • [7] Preparation and physical and thermal characterizations of enhanced phase change materials with nanoparticles for energy storage applications
    Muzhanje, Allan T.
    Hassan, M. A.
    El-Moneim, A. A.
    Hassan, Hamdy
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 390
  • [8] Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage
    Qian, Tingting
    Li, Jinhong
    Min, Xin
    Guan, Weimin
    Deng, Yong
    Ning, Lei
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (16) : 8526 - 8536
  • [9] Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges
    Tong, Xuan
    Li, Nianqi
    Zeng, Min
    Wang, Qiuwang
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 108 : 398 - 422
  • [10] THERMAL CONDUCTIVITY OF CARBON-BASED MATERIALS
    Kutuzov, S. V.
    Vasil'chenko, G. N.
    Chirka, T. V.
    Panov, E. N.
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2013, 54 (01) : 39 - 43