Global existence and blow up of positive initial energy solution of a quasilinear wave equation with nonlinear damping and source terms

被引:0
|
作者
Ogbiyele, Paul A. [1 ]
机构
[1] Univ Ibadan, Dept Math, Ibadan 200284, Nigeria
关键词
Galerkin approximation procedure; global solution; blow up; potential well; EVOLUTION-EQUATIONS; CAUCHY-PROBLEM; NONEXISTENCE THEOREMS; ASYMPTOTIC-BEHAVIOR;
D O I
10.1504/IJDSDE.2020.109105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a quasilinearwave equation having nonlinear damping and source terms u(tt)-Delta u(t)- Sigma(n)(i=1) partial derivative/partial derivative x(i) [sigma(i)(x, u(xi)) + beta(i)(x, u(txi))] + f(x, u(t)) = g(x, u) and obtained global existence and blow up results under certain polynomial growth conditions on the nonlinear functions sigma(i), beta(i), (i = 1, 2, ..., n), f and g. We obtain global existence result for positive initial energy solution using Galerkin approximation procedure and nonexistence (blow up) result using the technique introduced by Georgiev and Todorova (1994) with little modification for our problem.
引用
收藏
页码:299 / 320
页数:22
相关论文
共 50 条