Sparse Recovery over Graph Incidence Matrices

被引:0
|
作者
Zhao, Mengnan [1 ]
Kaba, M. Devrim [2 ]
Vidal, Rene [3 ]
Robinson, Daniel P. [2 ]
Mallada, Enrique [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
UNCERTAINTY PRINCIPLES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Classical results in sparse recovery guarantee the exact reconstruction of s-sparse signals under assumptions on the dictionary that are either too strong or NP-hard to check. Moreover, such results may be pessimistic in practice since they are based on a worst-case analysis. In this paper, we consider the sparse recovery of signals defined over a graph, for which the dictionary takes the form of an incidence matrix. We derive necessary and sufficient conditions for sparse recovery, which depend on properties of the cycles of the graph that can be checked in polynomial time. We also derive support-dependent conditions for sparse recovery that depend only on the intersection of the cycles of the graph with the support of the signal. Finally, we exploit sparsity properties on the measurements and the structure of incidence matrices to propose a specialized sub-graph-based recovery algorithm that outperforms the standard l(1)-minimization approach.
引用
收藏
页码:364 / 371
页数:8
相关论文
共 50 条
  • [1] Sparse Recovery Using Sparse Matrices
    Gilbert, Anna
    Indyk, Piotr
    PROCEEDINGS OF THE IEEE, 2010, 98 (06) : 937 - 947
  • [2] Sparse Recovery Using Sparse Random Matrices
    Indyk, Piotr
    LATIN 2010: THEORETICAL INFORMATICS, 2010, 6034 : 157 - 157
  • [3] SPARSE MATRICES AND LINEAR GRAPH THEORY
    MULLINEUX, N
    REED, JR
    INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATION, 1979, 16 (01) : 27 - 37
  • [4] Sparse Recovery With Graph Constraints
    Wang, Meng
    Xu, Weiyu
    Mallada, Enrique
    Tang, Ao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) : 1028 - 1044
  • [5] Post-Processing Posteriors Over Precision Matrices to Produce Sparse Graph Estimates
    Bashir, Amir
    Carvalho, Carlos M.
    Hahn, P. Richard
    Jones, M. Beatrix
    BAYESIAN ANALYSIS, 2019, 14 (04): : 1075 - 1090
  • [6] NONUNIFORM SPARSE RECOVERY WITH SUBGAUSSIAN MATRICES
    Ayaz, Ulas
    Rauhut, Holger
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 41 : 167 - 178
  • [7] Nonuniform sparse recovery with subgaussian matrices
    Ayaz, Ulaş
    Rauhut, Holger
    Electronic Transactions on Numerical Analysis, 2014, 41 : 167 - 178
  • [8] Practical construction of sensing matrices for a greedy sparse recovery algorithm over finite fields
    Gammoudi, Megane
    Scheunert, Christian
    Nguyen, Giang T.
    Fitzek, Frank
    2023 DATA COMPRESSION CONFERENCE, DCC, 2023, : 120 - 129
  • [9] Robust sparse recovery with sparse Bernoulli matrices via expanders
    Abdalla, Pedro
    Applied and Computational Harmonic Analysis, 2024, 73
  • [10] Sparse recovery properties of discrete random matrices
    Ferber, Asaf
    Sah, Ashwin
    Sawhney, Mehtaab
    Zhu, Yizhe
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (02) : 316 - 325