On smooth maps with finitely many critical points (vol 69, pg 783, 2004)

被引:7
|
作者
Andrica, D [1 ]
Funar, L
机构
[1] Babes Bolyai Univ Cluj, Fac Math & Comp Sci, Cluj Napoca 3400, Romania
[2] Univ Grenoble 1, Inst Fourier, UMR 5582, F-38402 St Martin Dheres, France
关键词
D O I
10.1112/S0024610705022404
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:231 / 236
页数:6
相关论文
共 50 条
  • [1] On smooth maps with finitely many critical points
    Andrica, D
    Funar, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 : 783 - 800
  • [2] Maps with finitely many critical points into high dimensional manifolds
    Funar, Louis
    REVISTA MATEMATICA COMPLUTENSE, 2021, 34 (02): : 585 - 595
  • [3] Maps with finitely many critical points into high dimensional manifolds
    Louis Funar
    Revista Matemática Complutense, 2021, 34 : 585 - 595
  • [4] Manifolds Which Admit Maps with Finitely Many Critical Points Into Spheres of Small Dimensions
    Funar, Louis
    Pintea, Cornel
    MICHIGAN MATHEMATICAL JOURNAL, 2018, 67 (03) : 585 - 615
  • [5] EXAMPLES OF SMOOTH MAPS WITH FINITELY MANY CRITICAL POINTS IN DIMENSIONS (4,3), (8,5) AND (16,9)
    Funar, Louis
    Pintea, Cornel
    Zhang, Ping
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (01) : 355 - 365
  • [6] Typical limit sets of critical points for smooth interval maps (vol 20, pg 15, 2000)
    Blokh, A
    Misiurewicz, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 661 - 661
  • [7] Critical points and surjectivity of smooth maps
    Shi, Yongjie
    Yu, Chengjie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (02) : 1163 - 1167
  • [8] Diderot and the body (vol 77, pg 783, 2004)
    Runte, R
    FRENCH REVIEW, 2005, 78 (03): : 466 - 466
  • [9] Continuous maps of dendrites with finitely many branch points and nonwandering sets
    Arai, T
    Chinen, N
    Suda, T
    TOPOLOGY PROCEEDINGS, VOL 26, NO 1, 2001-2002, 2002, 26 (01): : 29 - 36
  • [10] Finitely many smooth d-polytopes with n lattice points
    Tristram Bogart
    Christian Haase
    Milena Hering
    Benjamin Lorenz
    Benjamin Nill
    Andreas Paffenholz
    Günter Rote
    Francisco Santos
    Hal Schenck
    Israel Journal of Mathematics, 2015, 207 : 301 - 329