On measure-preserving C1 transformations of compact-open subsets of non-archimedean local fields

被引:0
|
作者
Kingsbery, James [1 ]
Levin, Alex [2 ]
Preygel, Anatoly [2 ]
Silva, Cesar E. [1 ]
机构
[1] Williams Coll, Dept Math, Williamstown, MA 01267 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
measure-preserving; ergodic; non-archimedean local field; EQUIDISTRIBUTION; DYNAMICS; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of a locally scaling transformation de. fined on a compact-open subset of a non-archimedean local field. We show that this class encompasses the Haar measure-preserving transformations de. fined by C-1 (in particular, polynomial) maps, and prove a structure theorem for locally scaling transformations. We use the theory of polynomial approximation on compact-open subsets of non-archimedean local fields to demonstrate the existence of ergodic Markov, and mixing Markov transformations defined by such polynomial maps. We also give simple sufficient conditions on the Mahler expansion of a continuous map Zp -> Zp for it to define a Bernoulli transformation.
引用
收藏
页码:61 / 85
页数:25
相关论文
共 3 条