Hydrogen production system combined with a catalytic reactor and a plasma membrane reactor from ammonia

被引:54
|
作者
Hayakawa, Yukio [1 ]
Miura, Tomonori [2 ]
Shizuya, Kota [1 ]
Wakazono, Shintaro [1 ]
Tokunaga, Kenya [1 ]
Kambara, Shinji [1 ]
机构
[1] Gifu Univ, Dept Chem & Biomol Sci, Gifu, Japan
[2] Sawafuji Elect Co Ltd, Gunma, Japan
关键词
Hydrogen production; Ammonia; Plasma; Hydrogen separation membrane; Catalyst; ENERGY-SYSTEMS;
D O I
10.1016/j.ijhydene.2018.12.141
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonia is a 1promising raw material for hydrogen production because it may solve several problems related to hydrogen transport and storage. Hydrogen can be effectively produced from ammonia via catalytic thermal decomposition; however, the resulting residual ammonia negatively influences the fuel cells. Therefore, a high-purity hydrogen production system comprising a catalytic decomposition reactor and a plasma membrane reactor (PMR) has been developed in this work. Most of the ammonia is converted to hydrogen and nitrogen by the catalytic reactor. After the product gas containing unreacted ammonia is introduced to the PMR, unreacted ammonia is decomposed and hydrogen is separated in the PMR. Based on these processes, hydrogen with a purity of 99.99% is obtained at the output of the PMR. Optimal operation conditions maximizing the hydrogen production flow rate were investigated. The gap length of the PMR and the gas differential pressure and applied voltage of the plasma influence the flow rate. A pure hydrogen flow rate of similar to 120 L/h was achieved using the current operating conditions. The maximum energy efficiency of the developed hydrogen production system is 28.5%. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:9987 / 9993
页数:7
相关论文
共 50 条
  • [1] Hydrogen production from ammonia by the plasma membrane reactor
    Hayakawa, Yukio
    Kambara, Shinji
    Miura, Tomonori
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 32082 - 32088
  • [2] Hydrogen Production from Ammonia Using Plasma Membrane Reactor
    Kambara, Shinji
    Hayakawa, Yukio
    Inoue, Yu
    Miura, Tomonori
    JOURNAL OF SUSTAINABLE DEVELOPMENT OF ENERGY WATER AND ENVIRONMENT SYSTEMS-JSDEWES, 2016, 4 (02): : 193 - 202
  • [3] A catalytic composite membrane reactor system for hydrogen production from ammonia using steam as a sweep gas
    Park, Yongha
    Cha, Junyoung
    Oh, Hyun-Taek
    Lee, Taeho
    Lee, Sung Hun
    Park, Myung Gon
    Jeong, Hyangsoo
    Kim, Yongmin
    Sohn, Hyuntae
    Nam, Suk Woo
    Han, Jonghee
    Yoon, Chang Won
    Jo, Young Suk
    JOURNAL OF MEMBRANE SCIENCE, 2020, 614
  • [4] Production of hydrogen from purge gases of ammonia plants in a catalytic hydrogen-permselective membrane reactor
    Rahimpour, M. R.
    Asgari, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (14) : 5795 - 5802
  • [5] CFD modelling of a membrane reactor for hydrogen production from ammonia
    Hla, San Shwe
    Dolan, Michael D.
    8TH TSME-INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING (TSME-ICOME 2017), 2018, 297
  • [6] Ammonia decomposition for hydrogen production using packed bed catalytic membrane reactor
    Nailwal, B. C.
    Chotalia, P.
    Salvi, J.
    Goswami, N.
    Muhmood, L.
    Adak, A. K.
    Kar, Soumitra
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 1272 - 1287
  • [7] A viable membrane reactor option for sustainable hydrogen production from ammonia
    Jo, Young Suk
    Cha, Junyoung
    Lee, Chan Hyun
    Jeong, Hyangsoo
    Yoon, Chang Won
    Nam, Suk Woo
    Han, Jonghee
    JOURNAL OF POWER SOURCES, 2018, 400 : 518 - 526
  • [8] 3D simulation of hydrogen production by ammonia decomposition in a catalytic membrane reactor
    Di Carlo, Andrea
    Dell'Era, Alessandro
    Del Prete, Zaccaria
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (18) : 11815 - 11824
  • [9] Ultra-pure hydrogen production via ammonia decomposition in a catalytic membrane reactor
    Cechetto, Valentina
    Di Felice, Luca
    Martinez, Rocio Gutierrez
    Plazaola, Alba Arratibel
    Gallucci, Fausto
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (49) : 21220 - 21230
  • [10] High purity, self-sustained, pressurized hydrogen production from ammonia in a catalytic membrane reactor
    Cerrillo, Jose L.
    Morlanes, Natalia
    Kulkarni, Shekhar R.
    Realpe, Natalia
    Ramirez, Adrian
    Katikaneni, Sai P.
    Paglieri, Stephen N.
    Lee, Kunho
    Harale, Aadesh
    Solami, Bandar
    Jamal, Aqil
    Sarathy, S. Mani
    Castano, Pedro
    Gascon, Jorge
    CHEMICAL ENGINEERING JOURNAL, 2022, 431