An electrochemical impedance study of the electrochemical doping process of platinum phthalocyanine microcrystals in non-aqueous electrolytes

被引:4
|
作者
Jiang, JH [1 ]
Kucernak, A [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England
来源
JOURNAL OF ELECTROANALYTICAL CHEMISTRY | 2001年 / 514卷 / 1-2期
基金
英国工程与自然科学研究理事会;
关键词
electrochemical doping; electrochemical impedance spectroscopy. platinum phthalocyanine; microcrystal;
D O I
10.1016/S0022-0728(01)00621-0
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The electrochemical doping process of platinum phthalocyanine (PtPc) microcrystalline films in acetonitrile electrolyte has been investigated using electrochemical impedance spectroscopy (EIS). The system shows the impedance behaviour expected for a conductive polymer-that is, the appearance of a separate Randles circuit, a Warburg section and purely capacitive behaviour at low frequencies, An equivalent circuit is developed which provides a good fit to experimental impedance data over a wide frequency range of 1 MHz-0.05 Hz. The kinetic parameters of the electrochemical doping process depend strongly upon the doping potential. Analysis of the conductivity of the PtPc film suggests that a percolation effect is responsible for the first-scan discrepancy. At low doping levels, the rate of the first electrochemical step is slow and determined by the conductivity of the microcrystalline film, Once the film becomes conductive, the electrochemical reaction is accelerated abruptly giving rise to a sharp peak. Further increases in doping potential trigger another slow oxidation process. The potential dependence of the diffusion-migration capacitance suggests strong interactions between charge carriers within the microcrystalline film. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] The electrochemistry of platinum phthalocyanine microcrystals III. Electrochemical behaviour in aqueous electrolytes
    Brown, RJC
    Kucernak, AR
    ELECTROCHIMICA ACTA, 2001, 46 (16) : 2573 - 2582
  • [2] Electrochemical impedance studies of the undoping process of platinum phthalocyanine charge transfer microcrystals
    Jiang, JH
    Kucernak, A
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2000, 490 (1-2): : 17 - 30
  • [3] The electrochemistry of platinum phthalocyanine microcrystals. IV. Temperature dependence of the electrochemical behaviour in non-aqueous solution
    Jiang, JH
    Kucernak, AR
    ELECTROCHIMICA ACTA, 2001, 46 (22) : 3445 - 3456
  • [4] Non-aqueous electrolytes for electrochemical capacitors
    Krummacher, J.
    Schuetter, C.
    Hess, L. H.
    Balducci, A.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 9 : 64 - 69
  • [5] The electrochemistry of platinum phthalocyanine microcrystals I. Electrochemical behaviour in acetonitrile electrolytes
    Jiang, JH
    Kucernak, A
    ELECTROCHIMICA ACTA, 2000, 45 (14) : 2227 - 2239
  • [6] Electrochemical crystallisation and characterisation of platinum phthalocyanine charge transfer salts in non-aqueous media
    Jiang, JH
    Kucernak, A
    SYNTHETIC METALS, 2000, 114 (02) : 209 - 218
  • [7] Electrochemical Analysis of Thiourea on Platinum in Non-Aqueous Electrolyte
    Mouanga, M.
    Bercot, P.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2011, 6 (04): : 1007 - 1013
  • [8] ELECTROCHEMICAL GENERATORS OF HIGH ENERGY DENSITY USING NON-AQUEOUS ELECTROLYTES
    DECHENAU.V
    GERBIER, G
    LAURENT, JF
    REVUE GENERALE DE THERMIQUE, 1968, 7 (83): : 1264 - &
  • [9] Conductivity and Electrochemical Stability of Non-Aqueous Electrolytes for Magnesium Power Sources
    Kolomoiets, O. V.
    Kirsanova, I. V.
    Lysytsya, I. S.
    Shembel, E. M.
    MATERIALS TODAY-PROCEEDINGS, 2019, 6 : 95 - 100
  • [10] Electrochemical examination of the ascorbic acid radical anion in non-aqueous electrolytes
    Yoshimura, M
    Honda, K
    Kondo, T
    Rao, TN
    Tryk, DA
    Fujishima, A
    ELECTROCHIMICA ACTA, 2002, 47 (27) : 4387 - 4392