Dominant and global dimension of blocks of quantised Schur algebras

被引:1
|
作者
Fang, Ming [1 ,2 ]
Hu, Wei [3 ]
Koenig, Steffen [4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, HCMS, HLM, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Beijing Normal Univ, MOE, Sch Math Sci, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[4] Univ Stuttgart, Inst Algebra & Number Theory, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
Dominant dimension; Global dimension; Schur algebras; Derived equivalences; SYMMETRIC-GROUPS; EQUIVALENCES; COHOMOLOGY; FUNCTORS;
D O I
10.1007/s00209-021-02792-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Group algebras of symmetric groups and their Hecke algebras are in Schur-Weyl duality with classical and quantised Schur algebras, respectively. Two homological dimensions, the dominant dimension and the global dimension, of the indecomposable summands (blocks) of these Schur algebras S(n, r) and S-q (n, r) with n >= r are determined explicitly, using a result on derived invariance in Fang, Hu and Koenig (J Reine Angew Math 770:59-85, 2021).
引用
收藏
页码:463 / 473
页数:11
相关论文
共 50 条