Elementary Number Theory Problems. Part V

被引:4
|
作者
Kornilowicz, Artur [1 ]
Naumowicz, Adam [1 ]
机构
[1] Univ Bialystok, Inst Comp Sci, Bialystok, Poland
来源
FORMALIZED MATHEMATICS | 2022年 / 30卷 / 03期
关键词
number theory; divisibility; primes;
D O I
10.2478/forma-2022-0018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper reports on the formalization of ten selected problems from W. Sierpinski's book "250 Problems in Elementary Number Theory " [5] using the Mizar system [4], [1], [2]. Problems 12, 13, 31, 32, 33, 35 and 40 belong to the chapter devoted to the divisibility of numbers, problem 47 concerns relatively prime numbers, whereas problems 76 and 79 are taken from the chapter on prime and composite numbers.
引用
收藏
页码:229 / 234
页数:6
相关论文
共 50 条
  • [1] Elementary Number Theory Problems. Part IX
    Kornilowicz, Artur
    FORMALIZED MATHEMATICS, 2023, 31 (01): : 161 - 169
  • [2] Elementary Number Theory Problems. Part VIII
    Kornilowicz, Artur
    FORMALIZED MATHEMATICS, 2023, 31 (01): : 87 - 100
  • [3] Elementary Number Theory Problems. Part I
    Naumowicz, Adam
    FORMALIZED MATHEMATICS, 2020, 28 (01): : 115 - 120
  • [4] Elementary Number Theory Problems. Part II
    Kornilowicz, Artur
    Surowik, Dariusz
    FORMALIZED MATHEMATICS, 2021, 29 (01): : 63 - 68
  • [5] Elementary Number Theory Problems. Part XI
    Naumowicz, Adam
    FORMALIZED MATHEMATICS, 2023, 31 (01): : 229 - 275
  • [6] Elementary Number Theory Problems. Part XIII
    Kornilowicz, Artur
    Ziobro, Rafal
    FORMALIZED MATHEMATICS, 2024, 32 (01): : 1 - 8
  • [7] Elementary Number Theory Problems. Part III
    Kornilowicz, Artur
    FORMALIZED MATHEMATICS, 2022, 30 (02): : 135 - 158
  • [8] Elementary Number Theory Problems. Part XVI
    Pak, Karol
    FORMALIZED MATHEMATICS, 2024, 32 (01): : 203 - 212
  • [9] Elementary Number Theory Problems. Part VI
    Grabowski, Adam
    FORMALIZED MATHEMATICS, 2022, 30 (03): : 235 - 244
  • [10] Elementary Number Theory Problems. Part X - Diophantine Equations
    Kornilowicz, Artur
    FORMALIZED MATHEMATICS, 2023, 31 (01): : 171 - 180