How to obtain extreme multistability in coupled dynamical systems (vol 85, 035202, 2012)

被引:5
|
作者
Hens, C. R. [1 ]
Banerjee, R. [1 ]
Feudel, U. [1 ]
Dana, S. K. [1 ]
机构
[1] CSIR Indian Inst Chem Biol, Kolkata, India
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 03期
关键词
25;
D O I
10.1103/PhysRevE.85.039907
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a method for designing an appropriate coupling scheme for two dynamical systems in order to realize extreme multistability. We achieve the coexistence of infinitely many attractors for a given set of parameters by using the concept of partial synchronization based on Lyapunov function stability. We show that the method is very general and allows a great flexibility in choosing the coupling. Furthermore, we demonstrate its applicability in different models, such as the Rossler system and a chemical oscillator. Finally we show that extreme multistability is robust with respect to parameter mismatch and, hence, a very general phenomenon in coupled systems.
引用
收藏
页数:1
相关论文
共 27 条
  • [1] Comment on "How to obtain extreme multistability in coupled dynamical systems"
    Sprott, J. C.
    Li, Chunbiao
    PHYSICAL REVIEW E, 2014, 89 (06):
  • [2] Reply to comment on 'How to obtain extreme multistability in coupled dynamical systems'
    Hens, C.R.
    Banerjee, R.
    Feudel, U.
    Dana, S.K.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2014, 89 (06):
  • [3] Multistability in coupled different-dimensional dynamical systems
    Khan, Mohammad Ali
    Nag, Mayurakshi
    Poria, Swarup
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (06):
  • [4] Multistability in coupled different-dimensional dynamical systems
    Mohammad Ali Khan
    Mayurakshi Nag
    Swarup Poria
    Pramana, 2018, 91
  • [5] Extreme multistable synchronisation in coupled dynamical systems
    Chakraborty, Priyanka
    Poria, Swarup
    PRAMANA-JOURNAL OF PHYSICS, 2019, 93 (02):
  • [6] Extreme multistable synchronisation in coupled dynamical systems
    Priyanka Chakraborty
    Swarup Poria
    Pramana, 2019, 93
  • [7] Retarded interactions in graphene systems (vol 85, 195427, 2012)
    Sernelius, Bo E.
    PHYSICAL REVIEW B, 2014, 89 (07):
  • [8] Quantizing Horava-Lifshitz gravity via causal dynamical triangulations (vol 85, 044027, 2012)
    Anderson, Christian
    Carlip, Steven J.
    Cooperman, Joshua H.
    Horava, Petr
    Kommu, Rajesh K.
    Zulkowski, Patrick R.
    PHYSICAL REVIEW D, 2012, 85 (04):
  • [9] GENERALIZED SEMIFLOWS AND CHAOS IN MULTIVALUED DYNAMICAL SYSTEMS(vol 26, 1246016, 2012)
    Beran, Zdenek
    Celikovsky, Sergej
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (16):
  • [10] Vortex line in spin-orbit coupled atomic Fermi gases (vol 85, 013622, 2012)
    Iskin, M.
    PHYSICAL REVIEW A, 2012, 85 (05):