Proper Generalized Decomposition of Parameterized Electrothermal Problems Discretized by the Finite Integration Technique

被引:9
|
作者
Krimm, Alexander [1 ]
Casper, Thorben [1 ,2 ]
Schoeps, Sebastian [1 ,2 ]
De Gersem, Herbert [1 ,2 ]
Chamoin, Ludovic [3 ]
机构
[1] Tech Univ Darmstadt, Inst Theorie Elektromagnet Felder, D-64289 Darmstadt, Germany
[2] Tech Univ Darmstadt, Grad Sch Computat Engn, D-64293 Darmstadt, Germany
[3] ENS Paris Saclay, Lab Mech & Technol, F-94230 Cachan, France
关键词
Curse of dimensionality; electrothermal; model order reduction; proper generalized decomposition (PGD); SIMULATION;
D O I
10.1109/TMAG.2019.2907223
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We apply the proper generalized decomposition (PGD) to a static electrothermal model subject to uncertainties. The quadratic electrothermal coupling term is non-standard and requires the introduction of a trilinear form. We use an existing finite integration technique (FIT)-based solver to demonstrate the opportunities of integrating the PGD in existing codes. The obtained reduced model approximates the temperature distribution in a voltage-excited microelectronic chip package that exhibits 12 wires of uncertain length.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Proper generalized decomposition solution of the parameterized Helmholtz problem: application to inverse geophysical problems
    Signorini, Marianna
    Zlotnik, Sergio
    Diez, Pedro
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (08) : 1085 - 1102
  • [2] Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation
    Modesto, David
    Zlotnik, Sergio
    Huerta, Antonio
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 295 : 127 - 149
  • [3] On the Existence of a Progressive Variational Vademecum based on the Proper Generalized Decomposition for a Class of Elliptic Parameterized Problems
    Falco, A.
    Montes, N.
    Chinesta, F.
    Hilario, L.
    Mora, M. C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 1093 - 1107
  • [4] Proper Generalized Decomposition for Multiscale and Multiphysics Problems
    Neron, David
    Ladeveze, Pierre
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2010, 17 (04) : 351 - 372
  • [5] Proper Generalized Decomposition for Multiscale and Multiphysics Problems
    David Néron
    Pierre Ladevèze
    Archives of Computational Methods in Engineering, 2010, 17 : 351 - 372
  • [6] Generalized Spectral Decomposition Approach to a Stochastic Finite Integration Technique Electrokinetic Formulation
    Codecasa, Lorenzo
    Di Rienzo, Luca
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2016, 31 (07): : 771 - 776
  • [7] Transient simulation of a linear actuator discretized by the finite integration technique
    Funieru, Mariana
    De Gersem, Herbert
    Weiland, Thomas
    SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING, 2007, 11 : 281 - +
  • [8] Cylindrical shell finite element based on the proper generalized decomposition
    Vidal, P.
    Gallimard, L.
    Polit, O.
    SHELL STRUCTURES: THEORY AND APPLICATIONS, VOL 3, 2014, : 449 - 452
  • [9] Composite beam finite element based on the Proper Generalized Decomposition
    Vidal, P.
    Gallimard, L.
    Polit, O.
    COMPUTERS & STRUCTURES, 2012, 102 : 76 - 86
  • [10] Generalized finite element method using proper orthogonal decomposition
    Aquino, W.
    Brigham, J. C.
    Earls, C. J.
    Sukumar, N.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (07) : 887 - 906