Quasi-Periodic Growth of One-Dimensional Copper Boride on Cu(110)

被引:5
|
作者
Tsujikawa, Yuki [1 ]
Zhang, Xiaoni [1 ]
Yamaguchi, Kazuki [1 ]
Haze, Masahiro [1 ]
Nakashima, Takeru [2 ]
Varadwaj, Arpita [3 ]
Sato, Yusuke [1 ]
Horio, Masafumi [1 ]
Hasegawa, Yukio [1 ]
Komori, Fumio [1 ]
Oshikawa, Masaki [1 ]
Kotsugi, Masato [3 ]
Ando, Yasunobu [2 ]
Kondo, Takahiro [4 ]
Matsuda, Iwao [1 ]
机构
[1] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[2] Natl Inst Adv Ind Sci & Technol, CD FMat, Tsukuba, Ibaraki 3058560, Japan
[3] Tokyo Univ Sci, Fac Adv Engn, Tokyo 1258585, Japan
[4] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058573, Japan
基金
日本学术振兴会;
关键词
boron; Cu(110); one dimension; quasi-periodicity; boride; NO AVERAGE LATTICE; INCOMMENSURATE STRUCTURE; 2-DIMENSIONAL BORON; CHEMISORPTION; EXAMPLE;
D O I
10.1021/acs.nanolett.3c03861
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An unexplored material of copper boride has been realized recently in two-dimensional form at a (111) surface of the fcc copper crystal. Here, one-dimensional (1-D) boron growth was observed on the Cu(110) surface, as probed by atomically resolved scanning probe microscopy. The 1-D copper boride was composed of quasi-periodic atomic chains periodically aligned parallel to each other, as confirmed by Fourier transform analysis. The 1-D growth unexpectedly proceeded across surface steps in a self-assembled manner and extended over several 100 nm. The long-range formation of a 1-D quasi-periodic structure on a surface has been theoretically modeled as a 1-D quasi-crystal and the predicted conditions matched the structural parameters obtained by the experimental work here. The quasi-periodic 1-D copper boride system enabled a way to examine 1-D quasi-crystallinity on an actual material.
引用
收藏
页码:1160 / 1167
页数:8
相关论文
共 50 条
  • [1] KAM THEORY FOR QUASI-PERIODIC EQUILIBRIA IN ONE-DIMENSIONAL QUASI-PERIODIC MEDIA
    Su, Xifeng
    de la Llave, Rafael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (06) : 3901 - 3927
  • [2] ELECTRONS ON ONE-DIMENSIONAL QUASI-PERIODIC LATTICES
    FUJITA, M
    MACHIDA, K
    SYNTHETIC METALS, 1987, 19 (1-3) : 39 - 44
  • [3] POLARONS IN A ONE-DIMENSIONAL QUASI-PERIODIC MODEL
    ECONOMOU, EN
    YANOVITSKII, O
    FRAGGIS, T
    PHYSICAL REVIEW B, 1993, 47 (02): : 740 - 752
  • [4] Localization in One-dimensional Quasi-periodic Nonlinear Systems
    Jiansheng Geng
    Jiangong You
    Zhiyan Zhao
    Geometric and Functional Analysis, 2014, 24 : 116 - 158
  • [5] STARK LADDER IN A ONE-DIMENSIONAL QUASI-PERIODIC SYSTEM
    NIIZEKI, K
    MATSUMURA, A
    PHYSICAL REVIEW B, 1993, 48 (06): : 4126 - 4129
  • [6] Localization in One-dimensional Quasi-periodic Nonlinear Systems
    Geng, Jiansheng
    You, Jiangong
    Zhao, Zhiyan
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (01) : 116 - 158
  • [7] Reducibility of one-dimensional quasi-periodic Schrodinger equations
    Geng, Jiansheng
    Zhao, Zhiyan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (03): : 436 - 453
  • [8] ALGEBRAIC STRUCTURES FOR ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    KRAMER, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (02): : 213 - 228
  • [9] POLARON FORMATION IN ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    PNEVMATIKOS, S
    YANOVITSKII, O
    FRAGGIS, T
    ECONOMOU, EN
    PHYSICAL REVIEW LETTERS, 1992, 68 (15) : 2370 - 2371
  • [10] ELECTRONS AND STRUCTURE OF QUASI-PERIODIC ONE-DIMENSIONAL CHAINS
    SCHMIDT, K
    SPRINGBORG, M
    SYNTHETIC METALS, 1993, 57 (2-3) : 4473 - 4478