When are Baer modules extending?

被引:0
|
作者
Ebrahim, Fatma Azmy F. [1 ]
Rizvi, Syed Tariq [2 ]
Roman, Cosmin S. [2 ]
机构
[1] Al Azhar Univ, Dept Math, Cairo 11754, Egypt
[2] Ohio State Univ, Dept Math, Lima, OH 45804 USA
关键词
Baer modules; extending modules; nonsingular modules; K-nonsingular modules; K-cononsingular modules; DIRECT SUMS; RINGS;
D O I
10.1142/S0219498824502475
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The well-known notion of an extending module is closely linked to that of a Baer module. A right R-module M is called extending if every submodule of M is essential in a direct summand. On the other hand, a right R-module M is called Baer if for all N <= M, l(S)(N) <=(circle plus) SS where S = End(R)(M). In 2004, Rizvi and Roman generalized a result of [A. W. Chatters and S. M. Khuri, Endomorphism rings of modules over non-singular CS rings, J. London Math. Soc. 21(2) (1980) 434-444.] in terms of modules and showed the connections between Baer and extending modules via the result: "a module M is K-nonsingular extending if and only if M is K-cononsingular Baer". MR is called K-nonsingular if for all phi is an element of S such that Ker phi <=(e) M, phi = 0. Moreover, M-R is called K-cononsingular if for any N <= M with phi N not equal 0 for all 0 not equal phi is an element of S, implies N <=(e) M. In view of this result, every Baer module which happens to be K-cononsingular will automatically become an extending module. In this paper, our main focus is the study of K-cononsingularity of modules. Our investigations are also motivated by the fact that very little is known about the notion of K-cononsingularity while sufficient knowledge exists about the other three remaining notions in the preceding result. Moreover, we introduce the notion of special extending (or sp-extending, for short) of a module and show that the class of K-cononsingular modules properly contains the class of extending modules and the class of special extending modules. Among other results, we obtain a new analogous version for the Rizvi-Roman's result which illustrates the close connections between Baer and extending modules. Examples illustrating the notions and delimiting our results are provided.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] t-EXTENDING MODULES AND t-BAER MODULES
    Asgari, Sh.
    Haghany, A.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (05) : 1605 - 1623
  • [2] STRONGLY T-EXTENDING MODULES AND STRONGLY T-BAER MODULES
    Atani, S. Ebrahimi
    Hesari, S. Dolati Pish
    Khoramdel, M.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2016, 20 : 86 - 99
  • [3] ON BAER MODULES
    Jayaram, Chillumuntala
    Tekir, Unsal
    Koc, Suat
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 63 (01): : 109 - 128
  • [4] BAER MODULES
    OKOH, F
    JOURNAL OF ALGEBRA, 1982, 77 (02) : 402 - 410
  • [5] Baer and quasi-Baer modules
    Rizvi, ST
    Roman, CS
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (01) : 103 - 123
  • [6] Baer semisimple modules and Baer rings
    Guo, Xiaojiang
    Shum, K. P.
    ALGEBRA & DISCRETE MATHEMATICS, 2008, (02): : 42 - 49
  • [7] On extensions of Baer and quasi-Baer modules
    Hashemi, Ebrahim
    Yazdanfar, Marzieh
    Alhevaz, Abdollah
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2018, 10 (02) : 402 - 417
  • [8] EXTENSIONS OF BAER AND QUASI-BAER MODULES
    Hashemi, E.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (01): : 1 - 13
  • [9] ON DUAL BAER MODULES
    Tuetuencue, Derya Keskin
    Tribak, Rachid
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 261 - 269
  • [10] On Dual Baer Modules
    Tutuncu, Derya Keskin
    Smith, Patrick F.
    Toksoy, Sultan Eylem
    RING THEORY AND ITS APPLICATIONS: RING THEORY SESSION IN HONOR OF T.Y. LAM ON HIS 70TH BIRTHDAY, 2014, 609 : 173 - +