Buried graphene heterostructures for electrostatic doping of low-dimensional materials

被引:1
|
作者
Gumprich, A. [1 ]
Liedtke, J. [1 ]
Beck, S. [1 ]
Chirca, I [2 ]
Potocnik, T. [2 ]
Alexander-Webber, J. A. [2 ]
Hofmann, S. [2 ]
Tappertzhofen, S. [1 ]
机构
[1] TU Dortmund Univ, Chair Micro & Nanoelect, Dept Elect Engn & Informat Technol, Martin Schmeisser Weg 4-6, D-44227 Dortmund, Germany
[2] Univ Cambridge, Dept Engn, 9 JJ Thompson Ave, Cambridge CB3 0FA, England
基金
英国工程与自然科学研究理事会;
关键词
low-dimensional materials; graphene-heterostructures; electrostatic doping; buried triple gates; steep slope transistors; carbon nanotube transistors; FIELD-EFFECT TRANSISTORS; CARBON; PERFORMANCE; FETS; DEPOSITION; IMPACT;
D O I
10.1088/1361-6528/acbaa2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The fabrication and characterization of steep slope transistor devices based on low-dimensional materials requires precise electrostatic doping profiles with steep spatial gradients in order to maintain maximum control over the channel. In this proof-of-concept study we present a versatile graphene heterostructure platform with three buried individually addressable gate electrodes. The platform is based on a vertical stack of embedded titanium and graphene separated by an intermediate oxide to provide an almost planar surface. We demonstrate the functionality and advantages of the platform by exploring transfer and output characteristics at different temperatures of carbon nanotube field-effect transistors with different electrostatic doping configurations. Furthermore, we back up the concept with finite element simulations to investigate the surface potential. The presented heterostructure is an ideal platform for analysis of electrostatic doping of low-dimensional materials for novel low-power transistor devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Spectroscopic ellipsometry for low-dimensional materials and heterostructures
    Yoo, SeokJae
    Park, Q-Han
    NANOPHOTONICS, 2022, 11 (12) : 2811 - 2825
  • [2] Graphene-analogous low-dimensional materials
    Tang, Qing
    Zhou, Zhen
    PROGRESS IN MATERIALS SCIENCE, 2013, 58 (08) : 1244 - 1315
  • [3] Low-dimensional thermoelectric materials
    M. S. Dresselhaus
    G. Dresselhaus
    X. Sun
    Z. Zhang
    S. B. Cronin
    T. Koga
    Physics of the Solid State, 1999, 41 : 679 - 682
  • [4] Phononics in low-dimensional materials
    Balandin, Alexander A.
    Nika, Denis L.
    MATERIALS TODAY, 2012, 15 (06) : 266 - 275
  • [5] Low-dimensional magnetic materials
    Katsumata, K
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1997, 2 (02): : 226 - 230
  • [6] Low-dimensional thermoelectric materials
    Dresselhaus, MS
    Dresselhaus, G
    Sun, X
    Zhang, Z
    Cronin, SB
    Koga, T
    PHYSICS OF THE SOLID STATE, 1999, 41 (05) : 679 - 682
  • [7] 2-PHOTON ABSORPTION IN LOW-DIMENSIONAL HETEROSTRUCTURES
    CINGOLANI, R
    LEPORE, M
    TOMMASI, R
    CATALANO, IM
    LAGE, H
    HEITMANN, D
    PLOOG, K
    JOURNAL DE PHYSIQUE IV, 1993, 3 (C5): : 131 - 138
  • [8] Charge transport in low-dimensional nitride semiconductor heterostructures
    Christou, A
    PHYSICA B, 2001, 296 (1-3): : 264 - 270
  • [9] Thermoelectricity of low-dimensional nanostructured materials
    Kantser, V. G.
    NANOSCALE DEVICES - FUNDAMENTALS AND APPLICATIONS, 2006, 233 : 291 - 307
  • [10] Melting and superheating of low-dimensional materials
    Lu, K
    Jin, ZH
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2001, 5 (01): : 39 - 44