Asymptotic existence theorem for formal power series solutions of singularly perturbed linear q-difference equations

被引:0
|
作者
Tahara, Hidetoshi [1 ]
机构
[1] Sophia Univ, Dept Informat & Commun Sci, Chiyoda Ku, Tokyo 1028554, Japan
关键词
Primary; 39A13; Secondary; 39A45; 34E10; 40G99; PARAMETRIC GEVREY ASYMPTOTICS; Q-ANALOG; SUMMABILITY; MULTISUMMABILITY;
D O I
10.1007/s00208-024-02861-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let q>1.In this paper, we consider a system of singularly perturbed linear holomorphic q-difference equations with a small parameter. This system has a formal power series solution with respect to the parameter with holomorphic coefficients such that the domain of coefficients becomes progressively smaller. The purpose of this paper is to construct a true holomorphic solution of the system that admits this formal power series solution as an asymptotic expansion with respect to the parameter.
引用
收藏
页码:3995 / 4039
页数:45
相关论文
共 50 条
  • [1] q-Nagumo norms and formal solutions to singularly perturbed q-difference equations
    Carrillo, Sergio A.
    Lastra, Alberto
    MATHEMATISCHE ANNALEN, 2025, 391 (03) : 3399 - 3428
  • [2] Multisummability of formal power series solutions of linear analytic q-difference equations
    Marotte, F
    Zhang, C
    ANNALES DE L INSTITUT FOURIER, 2000, 50 (06) : 1859 - +
  • [3] On the summability of formal power series solutions of q-difference equations - I
    Zhang, CG
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (04): : 349 - 352
  • [4] On the summability of formal power series solutions of q-difference equations, II
    Marotte, F
    Zhang, CG
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (08): : 715 - 718
  • [5] Asymptotic Behavior of Solutions to Half-Linear q-Difference Equations
    Rehak, Pavel
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [6] On the convergence of generalized power series solutions of q-difference equations
    Renat Gontsov
    Irina Goryuchkina
    Alberto Lastra
    Aequationes mathematicae, 2022, 96 : 579 - 597
  • [7] Asymptotic expansion and summability of solutions of linear q-difference equations.
    Ramis, JP
    Sauloy, J
    Zhang, CG
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (07) : 515 - 518
  • [8] Existence of solutions for fractional q-difference equations
    Ulke, Oykum
    Topal, Fatma Serap
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 573 - 591
  • [9] On the convergence of generalized power series solutions of q-difference equations
    Gontsov, Renat
    Goryuchkina, Irina
    Lastra, Alberto
    AEQUATIONES MATHEMATICAE, 2022, 96 (03) : 579 - 597
  • [10] Meromorphic solutions of linear q-difference equations
    Lastra, Alberto
    Remy, Pascal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 532 (01)