On a large-stepsize integrator for charged-particle dynamics

被引:3
|
作者
Lubich, Christian [1 ]
Shi, Yanyan [1 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
Charged particle; Strong non-uniform magnetic field; Guiding centre; Modified Boris integrator; Modulated Fourier expansion;
D O I
10.1007/s10543-023-00951-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Xiao and Qin (Comput Phys Commun 265:107981, 2021) recently proposed a remarkably simple modification of the Boris algorithm to compute the guiding centre of the highly oscillatory motion of a charged particle with step sizes that are much larger than the period of gyrorotations. They gave strong numerical evidence but no error analysis. This paper provides an analysis of the large-stepsize modified Boris method in a setting that has a strong non-uniform magnetic field and moderately bounded velocities, considered over a fixed finite time interval. The error analysis is based on comparing the modulated Fourier expansions of the exact and numerical solutions, for which the differential equations of the dominant terms are derived explicitly. Numerical experiments illustrate and complement the theoretical results.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On a large-stepsize integrator for charged-particle dynamics
    Christian Lubich
    Yanyan Shi
    BIT Numerical Mathematics, 2023, 63
  • [2] Large-stepsize integrators for charged-particle dynamics over multiple time scales
    Ernst Hairer
    Christian Lubich
    Yanyan Shi
    Numerische Mathematik, 2022, 151 : 659 - 691
  • [3] Large-stepsize integrators for charged-particle dynamics over multiple time scales
    Hairer, Ernst
    Lubich, Christian
    Shi, Yanyan
    NUMERISCHE MATHEMATIK, 2022, 151 (03) : 659 - 691
  • [4] A PRECISE INTEGRATOR FOR CHARGED-PARTICLE MOTION
    KAWAGUCHI, H
    HONMA, T
    IEEE TRANSACTIONS ON MAGNETICS, 1995, 31 (03) : 1412 - 1415
  • [5] Long-term analysis of a variational integrator for charged-particle dynamics in a strong magnetic field
    Ernst Hairer
    Christian Lubich
    Numerische Mathematik, 2020, 144 : 699 - 728
  • [6] Long-term analysis of a variational integrator for charged-particle dynamics in a strong magnetic field
    Hairer, Ernst
    Lubich, Christian
    NUMERISCHE MATHEMATIK, 2020, 144 (03) : 699 - 728
  • [7] A multimedia tutorial for charged-particle dynamics
    Silbar, RR
    PROCEEDINGS OF THE 1997 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-3: PLENARY AND SPECIAL SESSIONS ACCELERATORS AND STORAGE RINGS - BEAM DYNAMICS, INSTRUMENTATION, AND CONTROLS, 1998, : 1529 - 1531
  • [8] DYNAMICS OF A CHARGED-PARTICLE IN AN ACCELERATING FIELD
    BARTALUCCI, S
    BASSETTI, M
    PALUMBO, L
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1989, 104 (04): : 481 - 486
  • [9] SYMMETRIES IN RELATIVISTIC DYNAMICS OF A CHARGED-PARTICLE
    IWAI, T
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1976, 25 (04): : 335 - 343
  • [10] LEAPFROG METHODS FOR RELATIVISTIC CHARGED-PARTICLE DYNAMICS
    Hairer, Ernst
    Lubich, Christian
    Shi, Yanyan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (06) : 2844 - 2858