Harmonic Bloch space on the real hyperbolic ball

被引:0
|
作者
Ureyen, A. Ersin [1 ]
机构
[1] Eskisehir Tech Univ, Fac Sci, Dept Math, TR-26470 Eskisehir, Turkiye
关键词
Real hyperbolic ball; Hyperbolic harmonic function; Bloch space; Bergman projection; Atomic decomposition; UNIT BALL; REPRODUCING KERNEL;
D O I
10.1007/s43034-024-00335-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Bloch and the little Bloch spaces of harmonic functions on the real hyperbolic ball. We show that the Bergman projections from L infinity ( B ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>\infty ({\mathbb {B}})$$\end{document} to B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document} , and from C 0 ( B ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0({\mathbb {B}})$$\end{document} to B 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_0$$\end{document} are onto. We verify that the dual space of the hyperbolic harmonic Bergman space B alpha 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}<^>1_\alpha $$\end{document} is B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}$$\end{document} and its predual is B 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_0$$\end{document} . Finally, we obtain atomic decompositions of Bloch functions as series of Bergman reproducing kernels.
引用
收藏
页数:24
相关论文
共 50 条