Integration of negative-order modified Korteweg-de Vries equation in a class of periodic functions

被引:3
|
作者
Urazboev, G. U. [1 ,2 ]
Yakhshimuratov, A. B. [3 ]
Khasanov, M. M. [1 ]
机构
[1] Urgench State Univ, Urgench, Uzbekistan
[2] Uzbek Acad Sci, Romanovskiy Inst Math, Khorezm Branch, Urgench, Uzbekistan
[3] Tashkent Univ Informat Technol, Urgench Branch, Urgench, Uzbekistan
关键词
negative-order modified Korteweg-de Vries equation; Dirac operator; inverse spectral problem; Dubrovin-Trubowitz system of equations; trace formula; SELF-CONSISTENT SOURCE; NONLINEAR SCHRODINGER-EQUATION;
D O I
10.1134/S0040577923110053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the negative-order modified Korteweg-de Vries equation and show that it can be integrated by the inverse spectral transform method. We determine the evolution of the spectral data for the Dirac operator with periodic potential associated with a solution of the negative-order modified Korteweg-de Vries equation. The obtained results allow applying the inverse spectral transform method for solving the negative-order modified Korteweg-de Vries equation in the class of periodic functions. Important corollaries are obtained concerning the analyticity and the period of a solution in spatial variable. We show that a function constructed using the Dubrovin-Trubowitz system and the first trace formula satisfies the negative-order modified Korteweg-de Vries equation. We prove the solvability of the Cauchy problem for the infinite Dubrovin-Trubowitz system of differential equations in the class of three-times continuously differentiable periodic functions.
引用
收藏
页码:1689 / 1699
页数:11
相关论文
共 50 条
  • [1] Integration of negative-order modified Korteweg–de Vries equation in a class of periodic functions
    G. U. Urazboev
    A. B. Yakhshimuratov
    M. M. Khasanov
    Theoretical and Mathematical Physics, 2023, 217 : 1689 - 1699
  • [2] Integration of the Negative-Order Modified Korteweg–de Vries Equation with a Loaded Term in the Class of Periodic Functions
    G. U. Urazboev
    M. M. Khasanov
    O. B. Ismoilov
    Differential Equations, 2024, 60 (12) : 1757 - 1766
  • [3] Integration of negative-order modified Korteweg-de Vries equation with an integral source
    Urazboev, Gayrat Urazalievich
    Khasanov, Muzaffar Masharipovich
    Ismoilov, Okhunjon Bahram Ugli
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2024, 63 : 80 - 90
  • [4] Integration of a loaded Korteweg-de Vries equation in a class of periodic functions
    Yakhshimuratov A.B.
    Matyokubov M.M.
    Russian Mathematics, 2016, 60 (2) : 72 - 76
  • [5] Negative-order Korteweg-de Vries equations
    Qiao, Zhijun
    Fan, Engui
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [6] Integration of the negative order Korteweg-de Vries equation with a self-consistent source in the class of periodic functions
    Urazboev, Gayrat Urazalievich
    Hasanov, Muzaffar Masharipovich
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2022, 32 (02): : 228 - 239
  • [7] Integration of the Modified Korteweg-de Vries Equation with a Self-Consistent Source in the Class of Periodic Functions
    Yakhshimuratov, A. B.
    Khasanov, M. M.
    DIFFERENTIAL EQUATIONS, 2014, 50 (04) : 533 - 540
  • [8] Integration of the modified Korteweg-de Vries equation with a self-consistent source in the class of periodic functions
    A. B. Yakhshimuratov
    M. M. Khasanov
    Differential Equations, 2014, 50 : 533 - 540
  • [9] Nonlocal Symmetry and Backlund Transformation of a Negative-Order Korteweg-de Vries Equation
    Fei, Jinxi
    Cao, Weiping
    Ma, Zhengyi
    COMPLEXITY, 2019, 2019
  • [10] Quasiperiodic Solutions of the Negative-Order Korteweg-De Vries Hierarchy
    Jinbing Chen
    Theoretical and Mathematical Physics, 2019, 199 : 798 - 822