How to Tame Mobility in Federated Learning Over Mobile Networks?

被引:7
|
作者
Peng, Yan [1 ,2 ,3 ]
Tang, Xiaogang [4 ]
Zhou, Yiqing [1 ,2 ,3 ]
Hou, Yuenan [5 ]
Li, Jintao [1 ,2 ,3 ]
Qi, Yanli [1 ,2 ,3 ]
Liu, Ling [1 ,2 ,3 ]
Lin, Hai [4 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
[4] Space Engn Univ, Sch Aerosp Informat, Beijing 100015, Peoples R China
[5] Shanghai AI Lab, Shanghai 200232, Peoples R China
关键词
Federated learning; user mobility; resource allocation; convergence analysis; COMMUNICATION-EFFICIENT; CELLULAR NETWORKS;
D O I
10.1109/TWC.2023.3272920
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated learning (FL) over mobile networks has attracted intensive attention recently. User mobility is a fundamental feature of mobile networks, which leads to dynamic network topology and wireless connectivity losses. As such, user mobility is usually considered a "trouble maker" and a great challenge to FL over mobile networks. Interestingly, we found that small user mobility can positively contribute to improving FL performance. This is because the total dataset size and the data diversity that the FL can utilize are increased by user mobility. Based on this observation, we aim to tame and exploit mobility instead of treating it as a hostile "trouble maker". To this end, we first investigate how the FL performance changes with user mobility theoretically by jointly taking into account the positive and negative aspects of mobility. Specifically, a closed-form expression to quantify the impact of mobility on the FL loss is derived, which explains when negative or positive aspects of mobility dominate the FL performance. Next, a joint FL and communication optimization problem is formulated based on theoretical analyses to minimize the FL loss function by optimizing wireless resource allocation. Finally, we propose a two-step optimization algorithm to solve the formulated problem. The simulation results verify the theoretical analyses. It is also shown that the proposed method can significantly enhance learning performance considering users with high mobility. When the average velocity is larger than 150 km/h, the proposed method achieves more than 80% accuracy in the MNIST dataset, while the existing methods may fail during training.
引用
收藏
页码:9640 / 9657
页数:18
相关论文
共 50 条
  • [1] Performance Optimization of Federated Learning over Mobile Wireless Networks
    Chen, Mingzhe
    Poor, H. Vincent
    Saad, Walid
    Cui, Shuguang
    PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC2020), 2020,
  • [2] Optimal Device Selection for Federated Learning over Mobile Edge Networks
    Ching, Cheng-Wei
    Liu, Yu-Chun
    Yang, Chung-Kai
    Kuo, Jian-Jhih
    Su, Feng-Ting
    2020 IEEE 40TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2020, : 1298 - 1303
  • [3] Reliable Federated Learning for Mobile Networks
    Kang, Jiawen
    Xiong, Zehui
    Niyato, Dusit
    Zou, Yuze
    Zhang, Yang
    Guizani, Mohsen
    IEEE WIRELESS COMMUNICATIONS, 2020, 27 (02) : 72 - 80
  • [4] Hierarchical Personalized Federated Learning Over Massive Mobile Edge Computing Networks
    You, Chaoqun
    Guo, Kun
    Yang, Howard H.
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (11) : 8141 - 8157
  • [5] Semi-Synchronous Personalized Federated Learning Over Mobile Edge Networks
    You, Chaoqun
    Feng, Daquan
    Guo, Kun
    Yang, Howard H.
    Feng, Chenyuan
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (04) : 2262 - 2277
  • [6] Semi-Asynchronous Hierarchical Federated Learning Over Mobile Edge Networks
    Chen, Qimei
    You, Zehua
    Wu, Jing
    Liu, Yunpeng
    Jiang, Hao
    IEEE ACCESS, 2023, 11 : 18887 - 18899
  • [7] Federated Learning with User Mobility in Hierarchical Wireless Networks
    Feng, Chenyuan
    Yang, Howard H.
    Hu, Deshun
    Quek, Tony Q. S.
    Zhao, Zhiwei
    Min, Geyong
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [8] Federated Learning Empowered Mobile RISs for NOMA Networks
    Zhong, Ruikang
    Liu, Xiao
    Liu, Yuanwei
    Chen, Yue
    Han, Zhu
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 4956 - 4961
  • [9] Federated Learning in Mobile Edge Networks: A Comprehensive Survey
    Lim, Wei Yang Bryan
    Nguyen Cong Luong
    Dinh Thai Hoang
    Jiao, Yutao
    Liang, Ying-Chang
    Yang, Qiang
    Niyato, Dusit
    Miao, Chunyan
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (03): : 2031 - 2063
  • [10] Distributionally Robust Federated Learning for Mobile Edge Networks
    Le, Long Tan
    Nguyen, Tung-Anh
    Nguyen, Tuan-Dung
    Tran, Nguyen H.
    Truong, Nguyen Binh
    Vo, Phuong L.
    Hung, Bui Thanh
    Le, Tuan Anh
    MOBILE NETWORKS & APPLICATIONS, 2024, 29 (01): : 262 - 272