Distributed data-driven predictive control for cooperatively smoothing mixed traffic flow

被引:15
|
作者
Wang, Jiawei [1 ,2 ]
Lian, Yingzhao [2 ]
Jiang, Yuning [2 ]
Xu, Qing [1 ]
Li, Keqiang [1 ]
Jones, Colin N. [2 ]
机构
[1] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
[2] Ecole Polytech Fed Lausanne, Automat Control Lab, CH-1024 Lausanne, Switzerland
基金
中国国家自然科学基金;
关键词
Connected and automated vehicles; Mixed traffic; Data-driven predictive control; Distributed optimization; AUTOMATED VEHICLES; PLATOON CONTROL; CRUISE CONTROL; MODEL; IMPACT;
D O I
10.1016/j.trc.2023.104274
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Cooperative control of connected and automated vehicles (CAVs) promises smoother traffic flow. In mixed traffic, where human-driven vehicles with unknown dynamics coexist, datadriven predictive control techniques allow for CAV safe and optimal control with measurable traffic data. However, the centralized control setting in most existing strategies limits their scalability for large-scale mixed traffic flow. To address this problem, this paper proposes a cooperative DeeP-LCC (Data-EnablEd Predictive Leading Cruise Control) formulation and its distributed implementation algorithm. In cooperative DeeP-LCC, the traffic system is naturally partitioned into multiple subsystems with one single CAV, which collects local trajectory data for subsystem behavior predictions based on the Willems' fundamental lemma. Meanwhile, the cross-subsystem interaction is formulated as a coupling constraint. Then, we employ the Alternating Direction Method of Multipliers (ADMM) to design the distributed DeeP-LCC algorithm. This algorithm achieves both computation and communication efficiency, as well as trajectory data privacy, through parallel calculation. Our simulations on different traffic scales verify the real-time wave-dampening potential of distributed DeeP-LCC, which can reduce fuel consumption by over 31.84% in a large-scale traffic system of 100 vehicles with only 5%-20% CAVs.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Decentralized Robust Data-Driven Predictive Control for Smoothing Mixed Traffic Flow
    Shang, Xu
    Wang, Jiawei
    Zheng, Yang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (02) : 2075 - 2090
  • [2] Data-Driven Predictive Control for Connected and Autonomous Vehicles in Mixed Traffic
    Wang, Jiawei
    Zheng, Yang
    Xu, Qing
    Li, Keqiang
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 4739 - 4745
  • [3] Data-Driven Modeling and Distributed Predictive Control of Mixed Vehicle Platoons
    Zhan, Jingyuan
    Ma, Zibo
    Zhang, Liguo
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (01): : 572 - 582
  • [4] Data-Driven Distributed and Localized Model Predictive Control
    Alonso, Carmen Amo
    Yang, Fengjun
    Matni, Nikolai
    IEEE OPEN JOURNAL OF CONTROL SYSTEMS, 2022, 1 : 29 - 40
  • [5] Data-Driven Distributed Predictive Control via Network Optimization
    Allibhoy, Ahmed
    Cortes, Jorge
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 838 - 839
  • [6] Distributed Modeling in a MapReduce Framework for Data-Driven Traffic Flow Forecasting
    Chen, Cheng
    Liu, Zhong
    Lin, Wei-Hua
    Li, Shuangshuang
    Wang, Kai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2013, 14 (01) : 22 - 33
  • [7] Data-driven decision support for rail traffic control: A predictive approach
    Luo, Jie
    Peng, Qiyuan
    Wen, Chao
    Wen, Wen
    Huang, Ping
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 207
  • [8] Distributed Data-Driven Predictive Control via Dissipative Behavior Synthesis
    Yan, Yitao
    Bao, Jie
    Huang, Biao
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (05) : 2899 - 2914
  • [9] Implementation and Experimental Validation of Data-Driven Predictive Control for Dissipating Stop-and-Go Waves in Mixed Traffic
    Wang, Jiawei
    Zheng, Yang
    Dong, Jianghong
    Chen, Chaoyi
    Cai, Mengchi
    Li, Keqiang
    Xu, Qing
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (03) : 4570 - 4585
  • [10] Safety-Aware and Data-Driven Predictive Control for Connected Automated Vehicles at a Mixed Traffic Signalized Intersection
    Mahbub, A. M. Ishtiaque
    Viet-Anh Le
    Malikopoulos, Andreas A.
    IFAC PAPERSONLINE, 2022, 55 (24): : 51 - 56