Hybrid Supervised-Unsupervised Channel Estimation Scheme with Dynamic Transmission of Pilots

被引:0
|
作者
Dapena, Adriana [1 ]
Castro, Paula M. [1 ]
Garcia-Naya, Jose A. [1 ]
机构
[1] Univ A Coruna, Dept Elect & Syst, Campus Elvina, La Coruna 15071, Spain
关键词
Semi-blind approach; Blind source separation; MIMO systems; Decision feedback equalizers; BLIND SEPARATION;
D O I
10.1007/s11063-010-9164-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiple-Input Multiple-Output (MIMO) digital communications standards typically include pilot symbols in the definition of the transmit signals with the purpose of acquiring the Channel State Information (CSI) using supervised algorithms at the receiver side. Such pilot symbols convey no information and, therefore, system throughput, spectral efficiency and transmit energy consumption are all penalized. In this article, we propose to acquire the CSI combining supervised and unsupervised algorithms. Our strategy avoids the periodical transmission of unnecessary pilots by using a simple decision criterion to determine the time instants when the performance obtained with an unsupervised algorithm degrades or, equivalently, the time instants when pilots are required. We show the performance of this scheme for MIMO systems with Decision Feedback Equalizers (DFE) at the receiver.
引用
收藏
页码:12647 / 12661
页数:15
相关论文
共 50 条
  • [1] Hybrid Supervised-Unsupervised Channel Estimation Scheme with Dynamic Transmission of Pilots
    Adriana Dapena
    Paula M. Castro
    José A. García-Naya
    Neural Processing Letters, 2023, 55 : 12647 - 12661
  • [2] Hybrid Supervised-Unsupervised Channel Estimation Scheme with Dynamic Transmission of Pilots
    Dapena, Adriana
    Castro, Paula M.
    Garcia-Naya, Jose A.
    NEURAL PROCESSING LETTERS, 2011, 33 (01) : 1 - 15
  • [3] Hybrid Supervised-Unsupervised Channel Estimation Scheme with Dynamic Transmission of Pilots
    Adriana Dapena
    Paula M. Castro
    José A. García-Naya
    Neural Processing Letters, 2011, 33 : 1 - 15
  • [4] A Hybrid Supervised-Unsupervised Vocabulary Generation Algorithm for Visual Concept Recognition
    Binder, Alexander
    Wojcikiewicz, Wojciech
    Mueller, Christina
    Kawanabe, Motoaki
    COMPUTER VISION - ACCV 2010, PT III, 2011, 6494 : 95 - 108
  • [5] A Novel Channel Estimation Scheme Combining Adaptive Supervised and Unsupervised Algorithms
    Dapena, Adriana
    Labrador, Josmary
    Castro, Paula M.
    Garcia-Naya, Jose A.
    ADVANCES IN KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, 2012, 243 : 288 - 295
  • [6] Enhancing the Damage Detection and Classification of Unknown Classes with a Hybrid Supervised-Unsupervised Approach
    Stagi, Lorenzo
    Sclafani, Lorenzo
    Tronci, Eleonora M.
    Betti, Raimondo
    Milana, Silvia
    Culla, Antonio
    Roveri, Nicola
    Carcaterra, Antonio
    INFRASTRUCTURES, 2024, 9 (03)
  • [7] Channel estimation techniques for linear precoded systems: Supervised, unsupervised, and hybrid approaches
    Castro, Paula M.
    Garcia-Naya, Jose A.
    Dapena, Adriana
    Iglesia, Daniel
    SIGNAL PROCESSING, 2011, 91 (07) : 1578 - 1588
  • [8] In-Vehicle Network Attack Detection Across Vehicle Models: A Supervised-Unsupervised Hybrid Approach
    Nakamura S.
    Takeuchi K.
    Kashima H.
    Kishikawa T.
    Haga T.
    Sasaki T.
    Transactions of the Japanese Society for Artificial Intelligence, 2022, 37 (05):
  • [9] In-Vehicle Network Attack Detection Across Vehicle Models: A Supervised-Unsupervised Hybrid Approach
    Nakamura, Shu
    Takeuchi, Koh
    Kashima, Hisashi
    Kishikawa, Takeshi
    Ushio, Takashi
    Haga, Tomoyuki
    Sasaki, Takamitsu
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 1286 - 1291
  • [10] Optimizing Attribute Reduction in Multi-Granularity Data through a Hybrid Supervised-Unsupervised Model
    Fan, Zeyuan
    Chen, Jianjun
    Cui, Hongyang
    Song, Jingjing
    Xu, Taihua
    MATHEMATICS, 2024, 12 (10)