Enhanced heat transfer in hybrid CNT nanofluid flow over a permeable stretching convective thermal curved surface with magnetic field and thermal radiation

被引:3
|
作者
Panda, Subhajit [1 ,2 ]
Ontela, Surender [2 ,3 ]
Thumma, Thirupathi [4 ]
Pattnaik, P. K. [5 ]
Mishra, S. R. [6 ]
机构
[1] Siksha O Anusandhan Deemed Univ, Ctr Data Sci, Bhubaneswar 751030, Odisha, India
[2] Natl Inst Technol Mizoram, Dept Math, Aizawl 796012, India
[3] Natl Inst Technol Kurukshetra, Dept Math, Kurukshetra 136119, Haryana, India
[4] Vardhaman Coll Engn, Dept Comp Sci & Engn, Hyderabad 501218, Telangana, India
[5] Odisha Univ Technol & Res, Dept Math, Bhubaneswar 751029, Odisha, India
[6] Siksha O Anusandhan Deemed Univ, Dept Math, ITER, Bhubaneswar 751030, Odisha, India
来源
MODERN PHYSICS LETTERS B | 2024年 / 38卷 / 27期
关键词
Hybrid nanofluid; carbon nanotube; joule dissipation; heat source/sink; thermal radiation; Hamilton-crosser model; MHD FLOW;
D O I
10.1142/S0217984924502361
中图分类号
O59 [应用物理学];
学科分类号
摘要
The heat transfer characteristics of nanofluid play an important role in several industries to optimize their performance with the interaction of dissipative heat. However, in energy harvesting its application is vital. Therefore, the current heat transfer analysis was carried out based on the consequence of viscous and Joule dissipation in favour of the hybrid nanofluid flow over an elongating permeable curved convective thermal surface. Additionally, the external heat source and linear thermal radiation influence the flow phenomena whenever the velocity slip and nanoparticle shape effects associated with Hamilton-Crosser thermal conductivity model are significant. The designed equations relating to the flow phenomena are solved numerically using shooting-based Runge-Kutta fourth techniques followed by the similarity transformations used for the nondimensional form of the system of equations. The role of characterizing factors is deployed via graphs and described briefly. The correlation with the earlier investigation for the numerical outcomes of the rate of energy transport is also reported. The major outcomes of the study reveal that the enhanced curvature parameter along with the particle concentrations within their limit overshoots the velocity profiles further, the external heat source combined with thermal radiation also favors in enhancing fluid temperature.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip
    Abbas, Nadeem
    Rehman, Khalil Ur
    Shatanawi, Wasfi
    Malik, M. Y.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 135
  • [2] Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip
    Abbas, Nadeem
    Rehman, Khalil Ur
    Shatanawi, Wasfi
    Malik, M.Y.
    International Communications in Heat and Mass Transfer, 2022, 135
  • [3] MHD hybrid nanofluid flow with convective heat transfer over a permeable stretching/shrinking surface with radiation
    Wahid, Nur Syahirah
    Arifin, Norihan Md
    Khashi'ie, Najiyah Safwa
    Pop, Ioan
    Bachok, Norfifah
    Hafidzuddin, Ezad Hafidz
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2022, 32 (05) : 1706 - 1727
  • [4] MHD flow and heat transfer of hybrid nanofluid over a permeable moving surface in the presence of thermal radiation
    Zainal, Nurul Amira
    Nazar, Roslinda
    Naganthran, Kohilavani
    Pop, Ioan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (03) : 858 - 879
  • [5] Flow and heat transfer along a permeable stretching/shrinking curved surface in a hybrid nanofluid
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    PHYSICA SCRIPTA, 2019, 94 (10)
  • [6] Hydromagnetic slip flow of nanofluid over a curved stretching surface with heat generation and thermal radiation
    Abbas, Z.
    Naveed, M.
    Sajid, M.
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 215 : 756 - 762
  • [7] Heat transfer characteristics of MHD flow of Williamson nanofluid over an exponential permeable stretching curved surface with variable thermal conductivity
    Ahmed, Kamran
    Akbar, Tanvir
    Muhammad, Taseer
    Alghamdi, Metib
    CASE STUDIES IN THERMAL ENGINEERING, 2021, 28
  • [8] Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (09) : 3110 - 3127
  • [9] Convective Heat Transfer of a Hybrid Nanofluid over a Nonlinearly Stretching Surface with Radiation Effect
    Aly, Emad H.
    Rosca, Alin V.
    Rosca, Natalia C.
    Pop, Ioan
    MATHEMATICS, 2021, 9 (18)
  • [10] Dusty Casson Nanofluid Flow with Thermal Radiation Over a Permeable Exponentially Stretching Surface
    Hussain, Syed Asif
    Ali, Gohar
    Muhammad, Sher
    Shah, Syed Inayat Ali
    Ishaq, Mohammad
    Khan, Hamid
    JOURNAL OF NANOFLUIDS, 2019, 8 (04) : 714 - 724