Finite-Time Anti-Saturated Formation Tracking Control of Multiple Unmanned Aerial Vehicles: A Performance Tuning Way

被引:0
|
作者
Chen, Taoyi [1 ]
Lei, Yaolin [1 ]
Peng, Huixiang [1 ]
Chen, Yanqiao [1 ]
Chai, Xinghua [1 ]
Zhang, Zeyong [1 ]
机构
[1] 54th Res Inst CETC, Shijiazhuang 050081, Peoples R China
基金
中国国家自然科学基金;
关键词
unmanned aerial vehicles; actuator saturation; performance tuning control; finite-time control; 2ND-ORDER MULTIAGENT SYSTEMS; UAV FORMATION CONTROL; COLLISION-AVOIDANCE;
D O I
10.3390/math11204255
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A highly effective control method is very important to guarantee the safety of the formation of flying missions for multiple unmanned aerial vehicles (UAVs), especially in the presence of complex flying environments and actuator constraints. In this regard, this paper investigates the formation tracking control problem of multiple UAVs in the presence of actuator saturation. Firstly, a brand-novel finite-time anti-saturated control scheme is proposed for multiple UAVs to track the desired position commands, wherein the tracking performance is tuned by introducing a logarithmic function-based state-mapping policy. Then, an adaptive scheme based on projection rules is devised to compensate for the negative effects brought by the actuator saturation. Based on the proposed formation tracking controller, the finite-time formation tracking performance tuning and control saturation problems can be addressed simultaneously with a comparatively allowable system robustness. Finally, three groups of illustrative examples are organized to verify the effectiveness of the proposed formation tracking control scheme.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Adaptive Finite-Time Control for Formation Tracking of Multiple Nonholonomic Unmanned Aerial Vehicles with Quantized Input Signals
    Hu, Jinglin
    Sun, Xiuxia
    He, Lei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [2] Event-triggered Finite-time Formation Control for Multiple Unmanned Aerial Vehicles with Input Saturation
    Yang, Pan
    Zhang, An
    Zhou, Ding
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2021, 19 (05) : 1760 - 1773
  • [3] Event-triggered Finite-time Formation Control for Multiple Unmanned Aerial Vehicles with Input Saturation
    Pan Yang
    An Zhang
    Ding Zhou
    International Journal of Control, Automation and Systems, 2021, 19 : 1760 - 1773
  • [4] Finite-Time Convergent Robust Trajectory Tracking for Unmanned Aerial Vehicles
    Kumar, Saurabh
    Kumar, Shashi Ranjan
    2022 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2022, : 1166 - 1175
  • [5] Distributed Fractional-Order Finite-Time Control for Multiple Unmanned Aerial Vehicles
    Yu, Ziquan
    Qu, Yaohong
    Su, Chun-Yi
    Zhang, Youmin
    2018 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA), 2018, : 1058 - 1063
  • [6] Order-supplementary finite-time trajectory tracking control of quadrotor unmanned aerial vehicles
    Wang, Guodong
    Wang, Xiangyu
    Li, Shihua
    Lu, Kunfeng
    NONLINEAR DYNAMICS, 2024, 112 (10) : 8229 - 8247
  • [7] Event-Triggered Finite-Time Attitude Cooperative Control for Multiple Unmanned Aerial Vehicles
    Han, Qiang
    Zhou, Yongshuai
    Liu, Xin
    Tuo, Xianguo
    APPLIED BIONICS AND BIOMECHANICS, 2022, 2022
  • [8] Distributed Finite-Time Fault-Tolerant Containment Control for Multiple Unmanned Aerial Vehicles
    Yu, Ziquan
    Liu, Zhixiang
    Zhang, Youmin
    Qu, Yaohong
    Su, Chun-Yi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (06) : 2077 - 2091
  • [9] Finite-time formation tracking control for multiple vehicles: A motion planning approach
    Liu, Yongfang
    Zhao, Yu
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (14) : 3130 - 3149
  • [10] Finite-time distributed formation control for multiple unmanned surface vehicles with input saturation
    Huang, Bing
    Song, Shuo
    Zhu, Cheng
    Li, Jun
    Zhou, Bin
    OCEAN ENGINEERING, 2021, 233 (233)