Thermal behavior of composite phase change material of polyethylene in a shell and coil-based thermal energy storage: Numerical analysis

被引:7
|
作者
Sheikh, Mohsin Iqbal Abdul Raheman [1 ]
Ahammed, Md. Ezaz [1 ]
Gumtapure, Veershetty [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Mech Engn, Mangalore 575025, India
关键词
Phase change material; LLDP; Thermal energy storage; Charging time; Shell and coil; Graphene; Mass concentration; LATENT-HEAT STORAGE; CONDUCTIVITY ENHANCEMENT; PERFORMANCE; OPTIMIZATION; METHODOLOGY; DESIGN; SYSTEM; TUBE;
D O I
10.1016/j.est.2023.109438
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Energy management and environmental sustainability are important concerns across the world at present. In that context, using recycled waste material such as polyethylene as a phase change material (PCM) in a latent heat storage (LHS) system fulfils both motives. However, effective energy conversion requires proper design of thermal energy storage (TES) and improvement of thermophysical properties of the working material. In the present numerical analysis, a shell and coil-based TES is considered with linear low-density polyethylene (LLDP) as base material to be compounded with functionalized graphene in three different concentrations such as 1 %, 3 %, and 5 %, called composite phase change material i.e., CPCM1, CPCM2, and CPCM3 respectively. The diameter ratio between the coil and shell of TES, termed the geometrical ratio (Gr) is taken as 0.3, 0.5, and 0.7 in the analysis, whereas the coil's pitch length (pc) is varied from 10 mm to 30 mm. The orientation of TES is also varied from horizontal (0 degrees) to vertical position (90 degrees) with an interval of 30 degrees inclination. Results reveal that the charging time for the complete liquefaction of storage material decreases a maximum of 65 % in the case of CPCM 3 with 5 % graphene. Increasing the heat supply from 125 W to 250 W sharply decreases the charging time, however, further increasing heat power affects moderately. The charging time gradually decreases to 56 % and 54 % in the case of LLDP and CPCM 2 respectively as Gr increases from 0.3 to 0.7 in both cases. The pitch length effect on the thermal performance of TES is found to be negligible. The analysis shows that the horizontal position of TES accrues the lowest charging time for the thorough melting of PCM.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A polyethylene glycol/hydroxyapatite composite phase change material for thermal energy storage
    Wang, Yazhou
    Liang, Daxin
    Liu, Feng
    Zhang, Wenbo
    Di, Xin
    Wang, Chengyu
    APPLIED THERMAL ENGINEERING, 2017, 113 : 1475 - 1482
  • [2] Experimental and numerical study on thermal energy storage of polyethylene glycol/expanded graphite composite phase change material
    Lv, Yajun
    Zhou, Weibing
    Jin, Weizhun
    ENERGY AND BUILDINGS, 2016, 111 : 242 - 252
  • [3] Numerical and experimental analysis on thermal energy storage of polyethylene/functionalized graphene composite phase change materials
    Chavan, Santosh
    Gumtapure, Veershetty
    Perumal, Arumuga D.
    JOURNAL OF ENERGY STORAGE, 2020, 27
  • [4] Thermal Behavior of Composite Material Based on Phase Change Material/Plaster as Thermal Energy Storage in Multilayer Wall: Experimental Study
    Dardouri, Sana
    Medjahed, Bendida
    Almoneef, Maha M.
    Mbarek, Mohamed
    ACS OMEGA, 2024, 9 (23): : 24845 - 24852
  • [5] A NEW COMPOSITE PHASE CHANGE MATERIAL FOR THERMAL ENERGY STORAGE
    Su, Che-Fu
    Xiang, Xinrui
    Esmaeilzadeh, Hamed
    Wang, Jirui
    Fratto, Edward
    Charmchi, Majid
    Gu, Zhiyong
    Sun, Hongwei
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 6, 2019,
  • [6] Study on polyethylene glycol/silicon dioxide composite phase change thermal energy storage material
    Wang, Wei-Long
    Kang, Hui-Ying
    Yang, Xiao-Xi
    Fang, Yu-Tang
    Ding, Jing
    Gongneng Cailiao/Journal of Functional Materials, 2007, 38 (10): : 1652 - 1654
  • [7] Thermal behavior of encapsulated phase change material energy storage
    Al-Kayiem, Hussain H.
    Alhamdo, Mohammed H.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2012, 4 (01)
  • [8] Thermal performance of sodium acetate trihydrate based composite phase change material for thermal energy storage
    Zhao, Liang
    Xing, Yuming
    Liu, Xin
    Luo, Yegang
    APPLIED THERMAL ENGINEERING, 2018, 143 : 172 - 181
  • [9] Preparation and thermal characteristics of caprylic acid based composite as phase change material for thermal energy storage
    Sivasamy, P.
    Harikrishnan, S.
    Jayavel, R.
    Hussain, S. Imran
    Kalaiselvam, S.
    Lu, Li
    MATERIALS RESEARCH EXPRESS, 2019, 6 (10)
  • [10] Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation
    Caliano, Martina
    Bianco, Nicola
    Graditi, Giorgio
    Mongibello, Luigi
    APPLIED ENERGY, 2019, 256