Spherically symmetric elastic bodies in general relativity

被引:5
|
作者
Alho, Artur [1 ]
Natario, Jose [1 ]
Pani, Paolo [2 ,3 ]
Raposo, Guilherme [4 ]
机构
[1] Univ Lisbon, Ctr Math Anal Geometry & Dynam Syst, Inst Super Tecn, Av Rovisco Pais, P-1049001 Lisbon, Portugal
[2] Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[3] INFN Roma1, PiazzaleAldo Moro 5, I-00185 Rome, Italy
[4] Ctr Res & Dev Math & Applicat CIDMA, CIDMA Ctr Res & Dev Math & Applicat, Campus de Santiago, P-3810183 Aveiro, Portugal
基金
欧盟地平线“2020”;
关键词
elasticity; polytropes; self-gravitating; buchdahl limit; scale invariance; spherical symmetry; radial stability; NAKED SINGULARITIES; EINSTEIN EQUATIONS; GRAVITATION FIELD; STATIC SOLUTIONS; STARS; MODELS; FLUIDS; FOUNDATIONS; EXISTENCE; SPHERES;
D O I
10.1088/1361-6382/ad1e4b
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The purpose of this review it to present a renewed perspective of the problem of self-gravitating elastic bodies under spherical symmetry. It is also a companion to the papers (2022 Phys. Rev. D 105 044025, 2022 Phys. Rev. D 106 L041502) and (arXiv:2306.16584 [gr-qc]), where we introduced a new definition of spherically symmetric elastic bodies in general relativity, and applied it to investigate the existence and physical viability, including radial stability, of static self-gravitating elastic balls. We focus on elastic materials that generalize fluids with polytropic, linear, and affine equations of state, and discuss the symmetries of the energy density function, including homogeneity and the resulting scale invariance of the TOV equations. By introducing invariant characterizations of physically admissible initial data, we numerically construct mass-radius-compactness diagrams, and conjecture about the maximum compactness of stable physically admissible elastic balls.
引用
收藏
页数:109
相关论文
共 50 条
  • [1] Spherically symmetric steady states of John elastic bodies in general relativity
    Andreasson, Hakan
    Calogero, Simone
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (16)
  • [2] General spherically symmetric elastic stars in relativity
    I. Brito
    J. Carot
    E. G. L. R. Vaz
    General Relativity and Gravitation, 2010, 42 : 2357 - 2382
  • [3] General spherically symmetric elastic stars in relativity
    Brito, I.
    Carot, J.
    Vaz, E. G. L. R.
    GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (10) : 2357 - 2382
  • [4] Erratum to: General spherically symmetric elastic stars in relativity
    I. Brito
    J. Carot
    E. G. L. R. Vaz
    General Relativity and Gravitation, 2012, 44 : 287 - 301
  • [5] PROBLEM OF 2 ROTATING SPHERICALLY SYMMETRIC BODIES IN GENERAL RELATIVITY
    KURMAKAE.ZK
    SOVIET ASTRONOMY AJ USSR, 1967, 10 (05): : 822 - &
  • [6] Spherically symmetric magnetohydrodynamics in general relativity
    Carot, J
    Tupper, BOJ
    PHYSICAL REVIEW D, 1999, 59 (12)
  • [7] SPHERICALLY SYMMETRIC MOTIONS IN GENERAL RELATIVITY
    MCVITTIE, GC
    NATURE, 1966, 210 (5039) : 930 - &
  • [8] Pulsations of spherically symmetric systems in general relativity
    Brodbeck, O
    Heusler, M
    Straumann, N
    PHYSICAL REVIEW D, 1996, 53 (02): : 754 - 761
  • [9] On spherically symmetric stellar models in general relativity
    Makino, T
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1998, 38 (01): : 55 - 69
  • [10] Averaging spherically symmetric spacetimes in general relativity
    Coley, A. A.
    Pelavas, N.
    PHYSICAL REVIEW D, 2006, 74 (08):