Heat transfer and storage characteristics of a hexagonal close structured packed-bed thermal storage system with molten salt phase change materials

被引:12
|
作者
Wu, Xiaomin [1 ,2 ]
Tang, Zhongfeng [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Molten salt; Phase change materials; Packed; -bed; Heat; Thermal energy storage; Exergy; ENERGY STORAGE;
D O I
10.1016/j.est.2023.107356
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The phase change material (PCM) spheres using 316SS as the ball shell and solar salt (NaNO3-KNO3, 60-40 wt%) as the PCM were arranged in an orderly pebble-bed arrangement. The charging performance, energy and exergy of PCM spheres in the packed ball thermal energy storage system (PBTES) were investigated using CFD simu-lation in order to solve the problem of heat storage at 300 degrees C-500 degrees C. The results show that the total melting time of PCM spheres slightly decreases from 1455 s to 1319 s with the inlet velocity increasing. The average heat storage efficiency of PCM spheres and PBTES are improved with the inlet temperature increasing. When the inlet flow rate increases from 0.01 m/s to 0.10 m/s, the energy efficiency of PBTES increases approximately 5.06 times, and the exergy efficiency increases from 17.91 % to 99.55 %. However the heat energy storage and exergy efficiency of PCM spheres are not affected by the inlet velocity changing. The energy efficiency of PBTES in-creases about 2.09 times, and the exergy efficiency increases from 30.29 % to 70.93 % with the inlet temperature grows from 300 degrees C to 500 degrees C. It provides an idea for the design of the medium-high temperature and high-efficiency molten salt PCM heat storage system.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Thermal storage performance of molten salt thermocline system with packed phase change bed
    Lu, Jianfeng
    Yu, Tao
    Ding, Jing
    Yuan, Yibo
    ENERGY CONVERSION AND MANAGEMENT, 2015, 102 : 267 - 274
  • [2] Thermal analysis of molten salt thermocline thermal storage system with packed phase change bed
    Lu, Jianfeng
    Yu, Tao
    Ding, Jing
    Yuan, Yibo
    INTERNATIONAL CONFERENCE ON APPLIED ENERGY, ICAE2014, 2014, 61 : 2038 - 2041
  • [3] Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules
    Wu, Ming
    Xu, Chao
    He, Yaling
    APPLIED THERMAL ENGINEERING, 2016, 93 : 1061 - 1073
  • [4] Thermocline characteristics of molten-salt thermal energy storage in porous packed-bed tank
    Yin, Huibin
    Ding, Jing
    Jiang, Runhua
    Yang, Xiaoxi
    APPLIED THERMAL ENGINEERING, 2017, 110 : 855 - 863
  • [5] Coupled Thermal and Mechanical Dynamic Performances of the Molten Salt Packed-Bed Thermal Energy Storage System
    HUANG Lijuan
    DU Baocun
    LEI Yonggang
    JournalofThermalScience, 2022, 31 (05) : 1337 - 1350
  • [6] Coupled Thermal and Mechanical Dynamic Performances of the Molten Salt Packed-Bed Thermal Energy Storage System
    Lijuan Huang
    Baocun Du
    Yonggang Lei
    Journal of Thermal Science, 2022, 31 : 1337 - 1350
  • [7] Parametric study and standby behavior of a packed-bed molten salt thermocline thermal storage system
    Xu, Chao
    Wang, Zhifeng
    He, Yaling
    Li, Xin
    Bai, Fengwu
    RENEWABLE ENERGY, 2012, 48 : 1 - 9
  • [8] Coupled Thermal and Mechanical Dynamic Performances of the Molten Salt Packed-Bed Thermal Energy Storage System
    Huang Lijuan
    Du Baocun
    Lei Yonggang
    JOURNAL OF THERMAL SCIENCE, 2022, 31 (05) : 1337 - 1350
  • [9] EXPERIMENTAL INVESTIGATION OF A PACKED-BED LATENT HEAT THERMAL STORAGE SYSTEM WITH ENCAPSULATED PHASE CHANGE MATERIAL
    Alam, Tanvir E.
    Dhau, Jaspreet
    Goswami, D. Y.
    Rahman, M. M.
    Stefankos, Elias
    ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 6B, 2015,
  • [10] Performance analysis of a molten salt packed-bed thermal energy storage system using three different waste materials
    Kocak, Burcu
    Majo, Marc
    Barreneche, Camila
    Fernandez, Ana Ines
    Paksoy, Halime
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 278