Gully erosion prediction method from geoenvironmental data and supervised machine learning techniques

被引:1
|
作者
Lana, Julio Cesar [1 ]
机构
[1] Geol Survey Brazil, Ave Brasil 1731, BR-30140002 Belo Horizonte, MG, Brazil
关键词
Susceptibility; Soil; Artificial intelligence; Computational intelligence; Environmental hazard;
D O I
10.1016/j.mex.2023.102059
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predictive models are statistical representations that indicate, based on the historical data analy-sis, the probability of triggering a given phenomenon in the future. In geosciences, such models have been essential to predict the occurrence of adverse phenomena commonly associated with environmental disasters, such as gully erosion. Therefore, this paper presents a method for pro-ducing gully erosion predictive models based on geoenvironmental data and machine learning techniques. The method's effectiveness test was produced in a region of approximately 40,000 km2 in southeastern Brazil and compared the predictive performance of four models designed with different machine learning algorithms. The results demonstrated that the technique is capa-ble of producing models with high predictive ability, with emphasis on the random forest algo-rithm, which, in addition to having achieved the highest levels of accuracy, also produced highly realistic maps for the study area.center dot The method is straightforward and may be applied to predict other geological processes.center dot The application of the method does not require knowledge of programming language.center dot The models produced achieved high predictive performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine Learning Techniques for Gully Erosion Susceptibility Mapping: A Review
    Mohebzadeh, Hamid
    Biswas, Asim
    Rudra, Ramesh
    Daggupati, Prasad
    GEOSCIENCES, 2022, 12 (12)
  • [2] Gully erosion susceptibility prediction in Mollisols using machine learning models
    Wang, Y.
    Zhang, Y.
    Chen, H.
    JOURNAL OF SOIL AND WATER CONSERVATION, 2023, 78 (05) : 385 - 396
  • [3] Novel Ensemble Approaches of Machine Learning Techniques in Modeling the Gully Erosion Susceptibility
    Arabameri, Alireza
    Nalivan, Omid Asadi
    Saha, Sunil
    Roy, Jagabandhu
    Pradhan, Biswajeet
    Tiefenbacher, John P.
    Phuong Thao Thi Ngo
    REMOTE SENSING, 2020, 12 (11)
  • [4] Gully Erosion Management Machine learning algorithms
    Fernandes, Michelle
    Patel, Lavkush
    Lakshman, Kshama
    Mullasseri, Sileesh
    Verma, Sudhir
    David, T. Divya
    Singh, Archana
    Saalim, Syed Mohammad
    Jadav, Ravindra
    Vinayak, Vandana
    CURRENT SCIENCE, 2019, 116 (12): : 1944 - 1944
  • [5] Cyber Fraud Prediction with Supervised Machine Learning Techniques
    Li, Zhoulin
    Zhang, Hao
    Masum, Mohammad
    Shahriar, Hossain
    Haddad, Hisham
    ACMSE 2020: PROCEEDINGS OF THE 2020 ACM SOUTHEAST CONFERENCE, 2020, : 176 - 180
  • [6] Prediction of gully erosion susceptibility mapping using novel ensemble machine learning algorithms
    Arabameri, Alireza
    Pal, Subodh Chandra
    Costache, Romulus
    Saha, Asish
    Rezaie, Fatemeh
    Danesh, Amir Seyed
    Pradhan, Biswajeet
    Lee, Saro
    Nhat-Duc Hoang
    GEOMATICS NATURAL HAZARDS & RISK, 2021, 12 (01) : 469 - 498
  • [7] Spatial Prediction and Mapping of Gully Erosion Susceptibility Using Machine Learning Techniques in a Degraded Semi-Arid Region of Kenya
    Were, Kennedy
    Kebeney, Syphyline
    Churu, Harrison
    Mutio, James Mumo
    Njoroge, Ruth
    Mugaa, Denis
    Alkamoi, Boniface
    Ng'etich, Wilson
    Singh, Bal Ram
    LAND, 2023, 12 (04)
  • [8] Tamping Effectiveness Prediction Using Supervised Machine Learning Techniques
    Tan, Chang Wei
    Webb, Geoffrey I.
    Petitjean, Francois
    Reichl, Paul
    RAILWAY DEVELOPMENT, OPERATIONS, AND MAINTENANCE: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON RAIL TRANSPORTATION 2017 (ICRT 2017), 2018, : 1010 - 1023
  • [9] Breast cancer prediction using supervised machine learning techniques
    Dadheech, Pankaj
    Kalmani, Vijay
    Dogiwal, Sanwta Ram
    Sharma, Vijay Kumar
    Kumar, Ankit
    Pandey, Saroj Kumar
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2023, 44 (03): : 383 - 392
  • [10] Cardiovascular Disease Risk Prediction with Supervised Machine Learning Techniques
    Dritsas, Elias
    Alexiou, Sotiris
    Moustakas, Konstantinos
    ICT4AWE: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR AGEING WELL AND E-HEALTH, 2022, : 315 - 321